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A semi-analytical mesh-free series solution method is presented for modeling regional steady-state sub-
surface saturated–unsaturated flow in 2-D geometrically complex homogenous and stratified hill-slope
cross sections. Continuous solutions for pressure in the saturated and unsaturated zone are determined
iteratively, as is the location of the water table surface. Mass balance is satisfied exactly over the entire
domain except along boundaries and interfaces between layers, where errors are in an acceptable range.
The solutions are derived and demonstrated on multiple test cases. The errors for specific cases are
assessed and discussed.
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1. Introduction

Modeling of local and regional subsurface flow supports the
understanding of regional impacts of human interference and cli-
mate change on ground water systems and associated ecosystems
[1]. In many cases, both saturated and unsaturated zones must be
included in a model to fully describe observed phenomena [2]. In
such cases, numerical (rather than analytical) models have gener-
ally been used due to the complexity of subsurface flow, which
may include non-linear free boundaries, spatially varying material
properties with non-linear head dependency, and the presence of
geometrically-complex heterogeneity [2–10]. These discrete mod-
els are subject to numerical error and their efficiency and accuracy
depend upon the resolution of the underlying grid or mesh.
Discretization requirements in numerical methods typically con-
tribute to the computational expense of modeling, particularly
for free boundary problems where the location of water table is
unknown [7,8]. Grid-free (analytical or semi-analytical) methods
may be useful for circumventing adaptive mesh and dry cell issues
in widely-used numerical software such as MODFLOW [11]. Such
models, however, are often limited to geometrically regular and
homogenous systems with trivial boundary conditions where the
interaction between saturated and unsaturated zones is neglected
or overly simplified [12–15]. Recent advances in semi-analytical
series solution approaches have relaxed the constraints on geome-
try by enhancing the traditional method of separation of variables
with a simple numerical algorithm [16–18]. The purpose of the
research is to extend these semi-analytical series solution
approaches for application to regional 2-D steady free boundary
saturated–unsaturated subsurface flow induced by spatially vari-
able surface fluxes in geometrically complex homogenous and
stratified hillslopes.

2. Background

Semi-analytical methods can be used to accurately tackle
complex problems by benefiting from the strength of both analyt-
ical and numerical algorithms. For linear or linearized problems,
methods such as the series approach used here have the ability
to produce continuous and differentiable solutions which satisfy
the governing equation(s) exactly. Under many circumstances,
they can provide helpful insights into ground water-surface water
exchanges in 2-D and 3-D [19]. These powerful tools (e.g., series
solutions, separation of variables, Laplace and Hankel transforms,
etc.) can be augmented with a simple numerical technique such
as weighted least squares minimization (WLS) or numerical inver-
sion to address more geometrically or mathematically complex
fully saturated or saturated–unsaturated flow problems [16–24].
Yeh and Chang [24] recently presented a review on analytical
and semi-analytical techniques applied to simulate saturated–
unsaturated flow in a pumping test. The resulting semi-analytical
approaches satisfy mass balance and boundary conditions accu-
rately. To date, researchers have used semi-analytical schemes to
independently address the free boundary saturated–unsaturated
steady flow in homogenous systems [25] and topography-driven
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saturated flow in heterogeneous aquifers with geometrically com-
plex stratification [18]. However, these issues have never been ad-
dressed concurrently. In addition, a robust regional subsurface
model requires consideration of the interaction between subsur-
face flow and the topographic surface. Existing semi-analytical
models have paid scarce attention to this issue, and also have ne-
glected the capillary fringe zone [22,23,25]. However, researchers
have experimentally and numerically shown that horizontal flow
in this zone can have an effect on the magnitude of subsurface flow
toward a stream and upon the water table location [2,26].

Multiple researchers have applied semi-analytical series solu-
tions method to simulate topography-controlled saturated steady
flow in unconfined aquifers [17,18]. The series solution method is
a mesh-free scheme and is able to handle free boundary problems
without mesh generation issues. The solutions satisfy continuity of
mass exactly over both the saturated and vadose zones. Boundary
and continuity conditions along interfaces are satisfied accurately,
and explicit and continuous error estimates are immediately avail-
able. To simulate the vadose zone using the series solution method,
the pressure head-hydraulic conductivity relationship is described
using the exponential Gardner model [27]. Pullan [28] has demon-
strated that this exponential model is acceptable for a wide range
of soils.

3. Problem statement

Fig. 1 shows the general schematic of a stratified soil profile that
can be modeled using methods derived herein. An aquifer with
length L is subdivided into M layers with arbitrary geometry, each
with saturated conductivity Ks

m. Layers are indexed downward
from m = 1 to m = M and are bounded by the curve zmðxÞ above
and zmþ1ðxÞ below. The bottom bedrock zMþ1ðxÞ and sides of the
aquifer are impermeable. The topographic surface (z1(x)) is subject
to a specified surface flux distribution function (which may be cal-
culated from rainfall, evaporation and transpiration) and/or a
Dirichlet condition along surface water bodies (e.g., a river with
Fig. 1. Layout of the general problem. M layers are separated by the interfaces zm(x),
topographic surface. CF refers to the boundary between saturated and unsaturated zone
specified width and head). These conditions are easily amended
to account for the presence of multiple surface water features.
The saturated–unsaturated interface or top of capillary fringe
(zcf ðxÞ) is a moving boundary which defines the location of the
top of the saturated zone and the bottom of unsaturated zone.
The water table is defined as a boundary with zero pressure head.
All layer interfaces, the topographic surface, and the bedrock sur-
face are specified prior to solution.

Here the M-Layer system is divided into two zones: the satu-
rated zone (with Ms layers) and unsaturated zone (with Mu layers).
The relationship between M, Ms and Mu is a priori unknown and
will be discerned through the solution of the problem, since the
top of capillary fringe might intersect multiple layers. Note that
hereafter (s) and (u) describe saturated and unsaturated proper-
ties/variables.

For the saturated zone the problem is posed in terms of a dis-
charge potential, /s

m [L2T�1], defined as

/s
m ¼ Ks

mhmðx; zÞ ð1Þ

where hm(x, z) is the total hydraulic head in layer m, and Ks
m is the

saturated hydraulic conductivity of the mth layer [LT�1]. Using con-
tinuity of mass and Darcy’s law, each saturated layer’s discharge po-
tential function must satisfy the Laplace equation:

@2/s
m

@x2 þ
@2/s

m

@z2 ¼ 0 for m ¼ M�; . . . ;M ð2Þ

where M⁄ is the uppermost layer where the top of capillary fringe
interface (zcf ) exists. For the vadose zone, the problem is expressed
in terms of a Kirchhoff potential /u

m [L2T�1] in a manner similar to
[27,29]. The Kirchhoff potential is a function of pressure head u [L]

/u
mðumÞ ¼

Z um

�1
KmðgÞdg ð3Þ

and the gradient of this potential corresponds to the flow rate in the
mth unsaturated layer. Using the exponential Gardner model with
air entry pressure (as originally included by Rijtema [30])
with zM+1(x) corresponding to the bottom bedrock and z1(x) corresponding to the
s.
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KmðumÞ ¼ Ks
m expðamðum �ue

mÞÞ ð4Þ

for each unsaturated layer, the Kirchhoff potential is:

/u
mðumÞ ¼

Ke
m

am
expðamumÞ ð5Þ

where Ke
m ¼ Ks

m expð�amue
mÞ [LT�1], am [L�1] is sorptive number and

ue
m [L] is the air entry pressure head of the mth layer respectively.

Using the Kirchhoff potential and Gardner soil characteristic model,
the non-linear steady-state form of Richards’ equation,

@

@x
KmðumÞ

@um

@x

� �
þ @

@z
KmðumÞ

@um

@z

� �
þ @

@z
KmðumÞ ¼ 0 ð6Þ

is simplified to an equivalent linear 2-D governing equation for each
layer of the vadose zone [27,31,32]:

@2/u
m

@x2 þ
@2/u

m

@z2 þ am
@/u

m

@z
¼ 0 for m ¼ 1; . . . ;Mu ð7Þ

For both unsaturated and saturated 2-D steady flow, the stream
function formulation will be useful for applying some of the conti-
nuity and boundary conditions. The stream function formulation
can be obtained using a generalized form of the Cauchy-Riemann
equations for unsaturated flow [33],

@wu
m

@x
¼ � @/

u
m

@z
� am/u

m and
@wu

m

@z
¼ @/

u
m

@x
for m ¼ 1; . . . ;Mu ð8Þ

and Cauchy–Riemann equations for saturated flow,

@ws
m

@x
¼ � @/

s
m

@z
and

@ws
m

@z
¼ @/

s
m

@x
for m ¼ M�; . . . ;M ð9Þ

where wu
m and ws

m are unsaturated and saturated stream function of
the mth layer respectively. The unsaturated and saturated govern-
ing equations are equivalent to the following equations in terms
of the stream function for each layer of unsaturated and saturated
zones:

@2wu
m

@x2 þ
@2wu

m

@z2 þ am
@wu

m

@z
¼ 0 for m ¼ 1; . . . ;Mu ð10Þ

@2ws
m

@x2 þ
@2ws

m

@z2 ¼ 0 for m ¼ M�; . . . ;M ð11Þ

In a manner similar to Read and Broadbridge [33] for the vadose
zone and Wong and Craig [18] for the saturated zone, the normal
first order derivatives along a layer interface and the capillary fringe
surface can be decomposed into vertical and horizontal components
when the cosine of the slope angle describing each evaluation curve
approximated as unity. The resulting equations for unsaturated and
saturated zones are as follows:

@/u
m

@g
¼ @/

u
m

@z
� dẑ

dx
@/u

m

@x
þ am/u

m ð12Þ

@/s
m

@g
¼ @/

s
m

@z
� dẑ

dx
@/s

m

@x
ð13Þ

where g is the coordinate normal to each interface represented by
the function ẑðxÞ, which is either a layer interface zm(x) or top of
capillary fringe zcfðxÞ: Using the above equations (Eqs. (12) and
(13)) and Cauchy–Riemann equations (Eqs. (8) and (9)) the bound-
ary and continuity conditions along unsaturated and saturated
interfaces can be represented in terms of either potential or stream
function.

Across the sides of the domain in both unsaturated and satu-
rated zones, no-flow conditions in x-direction are imposed. The
stream function equivalent formulas for unsaturated and saturated
zones used in current paper are:
wu
mð0; zÞ ¼ 0 for m ¼ 1; . . . ;Mu ð14aÞ

wu
mðL; zÞ ¼ 0 for m ¼ 1; . . . ;Mu ð14bÞ

ws
mð0; zÞ ¼ 0 for m ¼ M�; . . . ;M ð15aÞ

ws
mðL; zÞ ¼ 0 for m ¼ M�; . . . ;M ð15bÞ

where L is the length of the domain (Fig. 1). The topographic surface
boundary condition with the arbitrary infiltration-evapotranspira-
tion function f(x) [LT�1] is:

@/u
1

@g
ðx; z1ðxÞÞ ¼ f ðxÞ ð16aÞ

or, using the stream function formulation as done in this paper:

@wu
1

@x
þ dz1ðxÞ

dx
@wu

1

@z
¼ �f ðxÞ ð16bÞ

where f(x) is taken as positive for infiltration and negative for
evapotranspiration. Along surface water features a uniform hydrau-
lic head is applied. The continuity of flux along the vadose zone lay-
ers interfaces for m = 2, . . . , Mu can be represented as its stream
function equivalent:

wu
mðx; zmðxÞÞ ¼ wu

m�1ðx; zmðxÞÞ ð17Þ

Similarly, the continuity of head uu along vadose zone interfaces in
terms of the Kirchhoff potential is

1
am

ln
am/u

m

Ks
m

� �
¼ 1

am�1
ln

am�1/
u
m�1

Ks
m�1

� �
ð18Þ

For the saturated zone, the continuity of flux (in terms of stream
function) and pressure head (in terms of discharge potential) along
each saturated layer interface (for m ¼ M� þ 1; . . . ;M) can be repre-
sented as:

ws
mðx; zmðxÞÞ ¼ ws

m�1ðx; zmðxÞÞ ð19Þ

/s
mðx; zmðxÞÞ

Ks
m

¼ /s
m�1ðx; zmðxÞÞ

Ks
m�1

ð20Þ

No-flow conditions are imposed at the bottom of the domain (bed-
rock) in the saturated zone which can be also represented in terms
of stream function as:

ws
Mðx; ZMþ1ðxÞÞ ¼ 0 ð21Þ

To complete the problem statement, continuity of flux and pressure
head must be enforced along the boundary between unsaturated
and saturated zones, here referred to as the top of capillary fringe
(cf):

wu
mðx; z�cfðxÞÞ ¼ ws

mðx; zþcfðxÞÞ ð22Þ

/s
m

Ks
m

ðx; zþcf ðxÞÞ � zþcfðxÞ ¼ uu
mðx; z�cf ðxÞÞ ¼ ue

m ð23Þ

here m is the layer where top of capillary fringe is located. In each
unsaturated layer (M = 1, ... ,Mu), the general stream function solu-
tion of the following form is assumed:

wu
mðx; zÞ ¼

XN

n¼0

Anm½sinðxnxÞ expðcnmzÞ� þ Bnm½sinðxnxÞ

� expð�cnmZÞ� ð24Þ

Note that the form of this solution is obtained using the method of
separation of variables and satisfies the unsaturated governing
equation (Eq. (10)). In the preceding equation n represents the coef-
ficient index, N is the order of approximation or total number of
terms in the series solution, and Anm, Bnm are the series coefficients
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associated with the mth unsaturated layer and nth coefficient index.
Through judicious selection of xn, cnm and �cnm the sides no-flow
conditions (Eqs. (14a) and (14b)) are satisfied:

xn ¼
np
L
; cnm ¼

�am

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

m þ
2np

L

� �2
s

;

�cnm ¼
�am

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

m þ
2np

L

� �2
s

ð25Þ

The Kirchhoff potential series solution can similarly be obtained:

/u
mðx; zÞ ¼ A0m expð�amZÞ �

XN

n¼1

cnm

xn
Anm½cosðxnxÞ expðcnmZÞ�

�

þ
�cnm

xn
Bnm½cosðxnxÞ expð�cnmZÞ�

�
ð26Þ

The series solution of the saturated governing equation (Eq. (11)) in
terms of stream function is similarly obtained using the method of
separation of variables while Cnm, Dnm are the saturated series
coefficients associated with the mth layer (m = M⁄, . . . ,M).

ws
mðx; zÞ ¼

XN

n¼0

ðCnm½sinðxnxÞ expðxnZÞ� þ Dnm½sinðxnxÞ

� expð�xnZÞ�Þ ð27Þ

Again, through judicious selection of xn ¼ np=L for n = 0, . . . ,N, the
side no-flow conditions (Eqs. (15a) and (15b)) are satisfied. The sat-
urated discharge potential series solution can be obtained using
Cauchy–Riemann conditions:

/s
mðx; zÞ ¼ C0m �

XN

n¼1

ðCnm½cosðxnxÞ expðxnzÞ�

þ Dnm½cosðxnxÞ expð�xnzÞ�Þ ð28Þ

The unknowns coefficients Anm, Bnm and Cnm, Dnm will be calculated
to satisfy the continuity and boundary conditions (Eqs. (16)–(23)).
4. Solution

The series solution for above the top of capillary fringe (i.e., the
unsaturated zone) and below the top of capillary fringe (i.e.,
ground water and capillary fringe zones) will be determined sepa-
rately by minimizing the boundary and continuity condition errors
at a set of NC uniformly spaced control points located along each
layer interface, the capillary fringe top, the topographic surface,
and the bedrock. The location of the top of capillary fringe and
water table are unknown priori, and will be obtained through a ro-
bust iterative scheme. Initially, the top of capillary fringe is fixed to
be equal to the river hydraulic head, and a Dirichlet condition of
u ¼ ue

m (where m is the layer where top of capillary fringe is lo-
cated) is applied. The unknown coefficients for the potential within
the unsaturated zone are then calculated by minimizing the
boundary and continuity condition errors at a set of NC control
points along each interface within the unsaturated zone (the topo-
graphic surface, top of capillary fringe, and layer interfaces), for a
total of NC � (Mu + 1) control points. The total weighted sum of
squared errors (TWSSE) is here subdivided into the errors along
mentioned evaluation curves, i.e.,

TWSSEu ¼WSSEt þ
XMu

m¼2

WSSEm þWSSEcf ð29aÞ

where

WSSEt ¼
XNC

i¼1

wi
@/u

1

@g
ðxi; z1ðxiÞÞ � f ðxiÞ

� �2

ð29bÞ
WSSEm ¼
XNC

i¼1

wi½wu
mðxi; zmðxiÞÞ � wu

m�1ðxi; zmðxiÞÞ�2

þ
XNC

i¼1

wi½uu
mðxi; zmðxiÞÞ �uu

m�1ðxi; zmðxiÞÞ�2;

for m ¼ 2; . . . ;Mu ð29cÞ
WSSEcf ¼
XNC

i¼1

wi½uu
cfðxi; z�cf ðxiÞÞ �ue

cf �
2 ð29dÞ

the subscripts refer to the errors along the topographic surface (t),
layer interfaces (m) and top of capillary fringe (cf). By minimizing
Eq. (29a), approximations of the unknown unsaturated coefficients
ðA1

nm;B
1
nmÞ at the first iteration (here the superscript refers to itera-

tion number) will be obtained and the series solutions for stream
function (24) and Kirchhoff potential (26) are fully defined. This
intermediate unsaturated zone solution provides the flux or stream
function distribution along the capillary fringe, which acts as the
top boundary condition in the solution of the saturated zone prob-
lem (Eq. (22)). In a manner similar to the unsaturated zone, the sat-
urated unknown coefficients are calculated by minimizing the total
weighted sum of squared error (TWSSE) at a set of control points
along top of capillary fringe location, bottom bedrock and interfaces
between saturated layers.

TWSSEs ¼WSSEcf þ
XM

m¼M�þ1

WSSEm þWSSEb ð30aÞ

where

WSSEcf ¼
XNC

i¼1

wi½ws
mðxi; zþcfðxiÞÞ � wu

mðxi; z�cfðxiÞÞ�2 ð30bÞ

Here m is the layer where top of capillary fringe is located

WSSEm ¼
XNC

i¼1

wi½ws
mðxi; zmðxiÞÞ � ws

m�1ðxi; zmðxiÞÞ�2

þ
XNC

i¼1

wi
/s

m

Ks
m

ðxi; zmðxiÞÞ �
/s

m�1

Ks
m�1
ðxi; zmðxiÞÞ

� �2

ð30cÞ
WSSEb ¼
XNC

i¼1

wi½ws
Mðxi; zMþ1ðxiÞÞ�2 ð30dÞ

By minimizing Eq. (30a), an approximation of the unknown satu-
rated coefficients ðC1

nm;D
1
nmÞ is obtained and the series solution in

terms of stream function (27) and discharge potential (28) are fully
defined. The saturated series solution provides a water pressure dis-
tribution along the approximate top of capillary fringe surface at
each control point (u1

cf ðxiÞ). In each iteration, this may be used to
modify top of capillary fringe location according to:

zkþ1
cf ðxiÞ ¼ zk

cf ðxiÞ þ sðuk
cf ðxiÞ �ue

mÞ ð31Þ

where k is the iteration number, ue
m is the air entry pressure

head of the mth layer (m is the layer where top of capillary fringe
is located), and s is a relaxation factor. The top of capillary fringe
location is therefore revised and this iteration scheme will be con-
tinued until the saturated pressure head at each control points
along top of capillary fringe uk

cf ðxiÞ converges to air entry pressure.
After the location of the top of capillary fringe converges to a fixed
position, the water table elevation is obtained as the contour with
zero pressure head. Note that solution of the overdetermined sys-
tem of equations is handled using the LSCOV function of MATLAB.
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5. Analysis

The following section describes a set of tests used to demon-
strate the quality and the convergence behaviour of the series solu-
tions. The efficiency of the approach is assessed for geometrically
complex homogenous and stratified unconfined aquifers under dif-
ferent surface boundary conditions. Normalized continuity and
boundary condition errors (Eqs. (32)) are assessed along each
interface (m) at points located between the control points used
within the least squares solution:

eflux
m ðxiÞ ¼

@/�

@g ðxiÞ � @/þ

@g ðxiÞ
��� ���

maxðf ðxÞÞ �minðf ðxÞÞ for m ¼ 1; . . . ;M þ 1 ð32aÞ

ehead
m ðxiÞ ¼

ju�ðxiÞ �uþðxiÞj
maxðuÞ �minðuÞ for m ¼ 2; . . . ;M ð32bÞ

Note that for the topographic surface (m = 1), eflux
1 ðxiÞ is

eflux
1 ðxiÞ ¼

f ðxiÞ � @/þ

@g ðxiÞ
��� ���

maxðf ðxÞÞ �minðf ðxÞÞ

and for the bottom bedrock (m = M + 1):

eflux
Mþ1ðxiÞ ¼

@/�

@g ðxiÞ
��� ���

maxðf ðxÞÞ �minðf ðxÞÞ

min(f(x)) and max(f(x)) [LT�1] refer to minimum and maximum flux
applied across the topographic surface, max(u) and min(u) [L] are
the maximum and minimum value of the pressure head in the en-
tire domain. In addition, with a manner similar to [25] total root
mean square normalized flux error (rmseflux) and total root mean
square normalized head error (rmsehead) are obtain as follows:
rmseflux ¼ 1ffiffiffiffiffiffiffi
NC
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNC

i¼1

ðeflux
1 ðxiÞÞ

2 þ
XNC

i¼1

ðeflux
Mþ1ðxiÞÞ

2 þ
XNC

i¼1

ðeflux
m ðxiÞÞ

2

" #vuut
ð33aÞ

rmsehead ¼ 1ffiffiffiffiffiffiffi
NC
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNC

i¼1

ðehead
m ðxiÞÞ

2

" #vuut for m ¼ 2; . . . ;M ð33bÞ
Fig. 2. (a) Surface flux distribution function f(x) used in example 1, (b) layout of the flow
in a homogenous unconfined aquifer adjacent to a constant head river (left side) after 1
The rate of convergence of the solutions with a free boundary con-
dition will also be assessed in the below cases.
5.1. Example 1: homogenous system

The configuration for a hypothetical homogenous unconfined
aquifer system adjacent to a 20 m wide river is shown in Fig. 2.
Fig. 2(a) shows the infiltration and evapotranspiration function
(f(x)) applied across the topographic surface. The hydrological and
hydrogeological parameters used in example 1 are: Ks = 1 m d�1,
a = 0.5 m�1, ue = �0.5 m, River Head = 5.5 m, River Width = 20 m.

The flow net for this problem, along with the calculated top of
capillary fringe and water table locations are shown in Fig. 2(b).
This solution was identified after 10 iterations. Hydraulic head
contours in the saturated zone show that conditions are nearly
hydrostatic beneath the water table.

The solution was obtained using (Mu + Ms) (2N + 1) = 282 coeffi-
cients and 1400 control points along each evaluation curve (i.e., the
topographic surface, bedrock and top of capillary fringe). The topo-
graphic surface boundary condition (Eq. (16b)), no-flow bedrock
boundary condition (Eq. (21)) and continuity of flux (Eq. (22))
and head (Eq. (23)) across top of capillary fringe, have been satis-
fied by expanding the general series solution (Eqs. (24), (26),
(27), and (28)) at control points along each interface and minimiz-
ing error using weighted least square method (Eqs. (29) and (30)).
Note that since the units and magnitude of the flux and head errors
are different, weighting coefficients for each control point (wi)
were considered as 4 and 1 for flux and head conditions respec-
tively. A relaxation factor s = 0.5 used to control the convergence
behaviour of the top of the capillary fringe (Eq. (31)).

Fig. 3 demonstrates the quality and the convergence behaviour
of the series solutions used in example 1. Fig. 3(a) shows the conver-
gence of the solution as the pressure head at 1400 control points
along the free boundary top of capillary fringe converges to air entry
pressure (ue = �0.5 m). As can be seen from the figure, control
points along the intersection of the top of capillary fringe and topo-
graphic surface have the largest absolute error at initial iterations.
Fig. 3(b) shows the normalized flux errors across the topographic
surface (eflux

1 ) and the bottom bedrock (eflux
Mþ1) at 1400 points between

the control points used for least squares minimization.
Although there is a flux error across the impermeable bedrock,

the net normalized flux error is on the order 10�17, which guaran-
streamlines (grey), hydraulic head lines (black), capillary fringe top and water table
0 iterations. The river is shown at the left side of the domain.



Fig. 3. (a) Convergence of the pressure head along the top of the capillary fringe to air entry pressure (ue ¼ �0:5 m using a relaxation factor of s = 0.5, (b) Normalized flux
error across the topographic surface and the bottom bedrock.
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tees mass conservation inside the domain. The largest normalized
flux error over both interfaces (2%) occurs along the intersection of
the top of capillary fringe and the topographic surface, and on the
right side of the topographic surface with higher f(xi) (Fig. 3(b)).
The error along the topographic surface can result from abrupt
changes of surface function (evapotranspiration to infiltration
and vice versa) that cause Gibbs phenomenon. Although a linear
transition was used between infiltration and evapotranspiration
(Fig. 2(a)), some degree of function smoothing could have reduced
this error. Normalized head errors along the river boundary condi-
tion are also on the order 10�8 (not shown here). In addition, total
root mean square normalized flux error (rmseflux) along the topo-
graphic surface and bottom bedrock are on the order of 10�3. Note
that, since the governing equation is elliptic and satisfied exactly
using series solutions method, the largest errors in the domain
occur along the system boundaries.

The series solution is seen to be valid and successful (with
acceptable ranges of error along boundaries) in naturally complex
homogenous regional unconfined aquifer as long as Gibbs
phenomenon is avoided and the Fourier series converges.
Fig. 4. Surface flux distribution function (f(x
5.2. Example 2: heterogeneous system

In a second example, a hypothetical regional aquifer system
with 4 layers is considered. The 5 m wide river with constant head
equal to 10 m is located at the left of the domain. Two different
surface flux distributions (f(x)) are considered in example 2 to as-
sess the impact of the surface water boundary upon the efficiency
of the approach (Fig. 4). The hydrological and hydro-geological
parameters used are: Ks

1 ¼ 10 m d�1, Ks
2 ¼ 8 m d�1, Ks

3 ¼ 0:8 m d�1,
Ks

4 ¼ 0:08 m d�1, a ¼ 1:5 m�1, (identical for 4 layers),
ue ¼ �0:25 m, (identical for 4 layers), River Head = 5 m, River
Width = 10 m. The sorptive number (a) and air entry pressure
(ue) are assumed to be identical for all layers. This assumption
guarantees that the continuity of head condition across the layer
interfaces in the unsaturated zone (Eq. (18)) can be expressed as
a linear equation with respect to the unknown solution
coefficients.

Fig. 5 shows the layout of flow net for the two cases. As can be
seen, while M is equal to 4 in both cases, Mu and Ms are 2 in case a
and for case b due to the intersection of the top of capillary fringe
)) used in example 2, for cases a and b.



Fig. 5. Layout of flow net in the 4-layer aquifer after 14 iterations, (a) case a, (b) case b. The river is shown at the left side of the domain.
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with the first layer interface Mu is 2 and Ms is 3. Fig. 5(b), in
addition, demonstrates as infiltration rate increases at
x = 1400 m, the top of capillary fringe elevation increases and
intersects the layer interface.
Fig. 6. Convergence of the moving boundary between saturated and unsaturated zones
factor (s) = 0.375.
Note that M⁄ (the uppermost layer in which the top of capillary
fringe is located) is the second and first layer for cases a and b,
respectively. The solutions were obtained using (2N + 1) = 101
coefficients in each layer ((Mu + Ms)(2N + 1) coefficients in total,
in example 2; (a) case a with relaxation factor (s) = 0.5, (b) case b with relaxation



A.A. Ameli et al. / Advances in Water Resources 60 (2013) 24–33 31
404 for case a and 505 for case b), and 1200 control points along
each evaluation curve.

Similar to example 1, for test case a each control point weight-
ing coefficients (wi) has been considered as 4 and 1 for flux and
head boundaries respectively and the relaxation factor (s) equal
to 0.5 used for the top of capillary fringe pressure head conver-
gence (Eq. (31)). For case b, on the other hand, a smaller relaxation
factor (s) = 0.375 was required to handle complications due to the
intersection of the top of capillary fringe and the layer interface.
Fig. 6 shows the rapid convergence of the solution for cases a
and b while the pressure head at 1200 control points along the
top of capillary fringe free boundary converges to the air entry
pressure (ue ¼ �0:25 m).

The steepness of the capillary fringe surface around the inter-
section combined with the change in material properties along this
free boundary interface may cause Gibbs phenomenon in case b;
this describes the slower convergence rate of the control points
around the intersection Fig. 7 shows the normalized flux errors
across the top eflux

m and the bottom eflux
Mþ1 boundary conditions, and

along the layer interfaces eflux
m at 1200 points for both cases .The

maximum normalized flux errors across all the interfaces are on
the order of 10�2 m d�1. For both cases, the maximum normalized
Fig. 7. Normalized flux boundary and continuity error across internal interfaces (1200 po
saturated parts of the first layer interface (z2) are shown in separate colours (black and gr
(For interpretation of the references to colour in this figure legend, the reader is referre
flux error along the topographic surface (2%) occurs at sharp
changes in surface function f(x) (Fig. 4). A high contrast in hydrau-
lic conductivity (K2

s =K3
s ¼ 10) across 2nd interface z3 (the interface

between the second layer and the third one), could cause normal-
ized flux error as high as 2% for both cases. Intersection of the top
of capillary fringe with the first layer interface (z2) caused an
abrupt change in the governing equation from the unsaturated into
the saturated along this interface. Consequently, normalized conti-
nuity flux errors across the first layer interface (z2) in case b are
higher than in case a around the intersection with a maximum er-
ror of 3% at x = 1500 m (the intersection point circle in Fig. 7(b)).
Normalized flux error trend across this interface for case b are al-
most identical to case a for points far away from the intersection.
In addition, for both cases a and b total root mean square normal-
ized flux error (rmseflux) are on the order of 10�3, with the largest
contribution to this error found along the topographic surface.

The errors in flux are within acceptable range, although the pre-
vious series solutions of [18,25] reported lower flux errors. This
may be attributed to the discontinuities in the gradient of the infil-
tration distribution function, the complexity of the stratified do-
main geometry, or the complexity of the free boundary problem,
any of which can exacerbate Gibbs phenomenon. However, the
ints) after 14 iterations in the example 2; (a) case a, (b) case b. The unsaturated and
een respectively) and black circle shows the location of the maximum error along z2.
d to the web version of this article.)



Fig. 8. Normalized head continuity error across internal interfaces in example 2, (a) case a, (b) case b. The unsaturated and saturated part of the first layer interface (z2) are
shown in separate colours (black and green respectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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net normalized flux error across layer interfaces and bottom bed-
rock are on the order of 10�18 to 10�14 for both cases except for
the first layer interface in case b with errors on the order of 10�7

(due to intersection of the top of capillary fringe with the first layer
interface). Fig. 8 illustrates the normalized head errors ehead

m across
the layer interfaces at 1200 points for both cases. Similar to the flux
errors across the layer interfaces, for case b the maximum normal-
ized head errors across the first layer interface occur at the inter-
section of the top of capillary fringe and this interface that is in a
magnitude of 10�5 (m). For both cases, a high contrast in hydraulic
conductivity (8/0.8) across 2nd interface (z3) could cause the high-
est normalized head errors over the entire domain. In addition, for
both cases a and b total root mean square normalized head error
(rmsehead) are on the order of 10�7.

Despite the presence of complex geometry and stratification,
the presence of a free boundary the series solution approach can
still be deemed successful for the simulation of steady saturated–
unsaturated flow induced by surface water bodies in naturally
complex regional homogenous and stratified hillslopes as long as
the Fourier series converges. This is contingent upon

� The continuity conditions being linear (e.g., identical sorptive
number and air entry pressure head for all unsaturated layers)
� interfaces being continuous in value and gradient
� the surface function (f(x)) being continuous in value and ideally

gradient

6. Conclusion

Mixed saturated–unsaturated flow simulation has historically
not been within the reach of analytical schemes, particularly in geo-
metrically complex heterogeneous aquifers. In this paper, robust
general solutions for free boundary steady saturated–unsaturated
flow in naturally complex heterogeneous geological settings have
been developed and assessed. The capillary fringe zone has been
considered as a distinctive zone with free boundary at the top and
bottom. Semi-analytical series solutions have been showed to sim-
ulate coupled saturated and unsaturated flow accurately (as long as
Gibbs phenomenon issue has been addressed) with acceptable rates
of convergence and errors in top of capillary fringe and water table
locations. Without discretization artefacts, introduced by numerical
schemes, boundary errors, pressure head, flux and stream function
distributions are immediately available as continuous function of
the space. The number of degrees of freedom required to simulate
these relatively complex systems is small.

Demonstrated efficiency of the pseudo-linear approach sug-
gests that it is worth considering to later extend the series solution
to transient and 3-D problems while considering more challenging
cases (such as when sorptive number and air entry pressure vary
between different aquifer layers).
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