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Abstract:

The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of
catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust
physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for
subsurface flow paths, residence times and transit time distribution. Here we present a general semi-analytical solution for the
simulation of 2D steady-state saturated-unsaturated flow in hillslopes with saturated hydraulic conductivity that declines
exponentially with depth. The grid-free solution satisfies mass balance exactly over the entire saturated and unsaturated zones.
The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any
interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit
time distributions in hillslopes with the assumption of depth-varying saturated hydraulic conductivity. The model outputs reveal
the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow
pathlines, residence time and transit time distribution. This new steady-state model may be useful to others for posing hypotheses
about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2015
John Wiley & Sons, Ltd.
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INTRODUCTION

The exponential decline in saturated hydraulic conduc-
tivity (Ks) with depth is a hallmark of hillslope and
catchment hydrology. Classic studies (e.g. Weyman,
1973; Harr, 1977; Anderson and Burt, 1978) have shown
this empirically, and such distributions are a ubiquitous
feature of forest soils. The rapid decline in Ks with depth
was a central feature of Keith Beven’s TOPMODEL
(Beven and Kirkby, 1979) that ushered a revolution in
semi-distributed modelling approaches. TOPMODEL
captures this key feature of soil structure by allowing
lateral flow to increase exponentially as precipitation or
snowmelt raise the water table closer and closer to the
rrespondence to: Ali A. Ameli, Department of Biology, Biological &
logical Sciences Building, University of Western Ontario, London,
tario, N6A 5B7 Canada.
ail: aameli2@uwo.ca

yright © 2015 John Wiley & Sons, Ltd.
ground surface. In Scandinavia and other till mantled
terrain, such processes have been studied extensively
where the term ‘transmissivity feedback’ is now used to
describe the phenomenological behaviour linked to the
exponential Ks decline with depth (Lundin, 1982; Rodhe,
1989; Nyberg, 1995; Bishop et al., 2004; Bishop et al.,
2011; Seibert et al., 2011).
The exponential decline in Ks with depth influences

features of subsurface flow such as the distribution of
pathlines, velocity and residence time along these
pathlines. While the incorporation of exponential decline
in saturated hydraulic conductivity can be relatively
straightforward for conceptual models (Beven, 1983;
Beven, 1984), the step from conceptual boxes to a more
explicit and detailed description of flow paths and
residence times has been challenging. One notable
exception is the multiple interacting pathways model
(MIPs) suggested originally by Beven et al. (1989) and
more recently developed by Davies et al. (2013). MIPs
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can represent both subsurface flow and particle transport
in an ‘integrated’ solution, directly acknowledging
exponential decline in Ks as well as small-scale (pore)
and large-scale (e.g. preferential flow) subsurface hetero-
geneity.
The MIPs model, however, has many degrees of

freedom (parameters) and requires the assumption of
exponential water velocity distribution with porosity,
which can be unrealistic under certain subsurface
conditions. Other distributed watershed-scale conceptual
models have taken this into account via a variable (albeit
not exponential) saturated hydraulic conductivity with
depth. Such work has resulted in prediction of mean
transit time, but not explicit flow pathline and residence
time distributions (e.g.Vaché and McDonnell, 2006).
More recently, Birkel et al. (2011) used a novel lumped
conceptual flow-tracer model to predict subsurface tracer
composition and transit time using a simple linear
discharge-storage relationship to calculate tracer com-
position in both soil and shallow groundwater reservoirs.
An assumption of instantaneous and complete mixing at
each reservoir is required, with many storage-related
parameters to be calibrated. While useful, such reservoir
and storage-based models cannot explicitly incorporate
the potential impacts of the variation in saturated
hydraulic conductivity with depth on subsurface flow
and transport.
Discrete physically based numerical models offer an

alternative approach with the potential to incorporate both
an exponential decline in Ks (by adopting many discrete
sublayers with different Ks) as well as an explicit
subsurface flow and transport solution (e.g. Cardenas
and Jiang, 2010). But the implementation of rapid
changes in Ks with depth in free boundary models with
a priori unknown location of water table may cause high
computational cost and numerical difficulties (such as
numerical instability, dispersion and artificial oscillation)
for the particle transport solution, which are compounded
as the rate of Ks change with depth increases. This
problem can be attributed to the interpolation process that
is required to generate a continuous map of subsurface
velocity (from a ‘discrete’ map of potential head). This
cannot always satisfy local mass balance, especially as the
degree of heterogeneity in subsurface material properties
increases. Salamon et al. (2006); Starn et al. (2012) and
more recently Ameli and Abedini (2016) have
commented on the limitations of discrete grid-based
numerical subsurface transport models. Such schemes to
date have considered gradual, smooth changes in Ks with
depth (e.g. Jiang et al., 2009; Cardenas and Jiang, 2010;
Jiang et al., 2010). But much more rapid changes in Ks

with depth are the norm, especially in shallow glacial till
catchments (e.g. Lundin, 1982; Nyberg, 1995; Seibert
et al., 2011; Grip, 2015).
Copyright © 2015 John Wiley & Sons, Ltd.
‘Continuous’ grid-free analytical models can offer a
stable, efficient alternative to available numerical and
conceptual schemes for simulation of subsurface flow and
particle movement in hillslopes with an exponential
decrease in saturated hydraulic conductivity with depth.
These models have fewer degrees of freedom and rapidly
produce continuous maps of velocity without any
interpolation-related issues. In recent years, several such
models have been presented that are able to explicitly
(and continuously) incorporate an exponential depth-
decaying saturated hydraulic conductivity function
(Marklund and Wörman, 2007; Jiang et al., 2011; Wang
et al., 2011; Zlotnik et al., 2011). Notwithstanding,
traditional analytical solutions are restricted typically to
geometrically simple groundwater systems and cannot be
used for the purpose of subsurface flow and particle
movement simulation in systems with a more realistic
degree of complexity. Specifically, the existing analytical
schemes (as well as many conceptual and numerical
models) that include the exponential decline in saturated
hydraulic conductivity have relied on a key assumption:
that the topography represents the gradients in ground-
water surface, i.e. topography-driven assumption (Toth,
1963). Such works treat the water table location as a
replica of land surface either without the inclusion of the
unsaturated zone (e.g. Cardenas and Jiang, 2010; Jiang
et al., 2011; Wang et al., 2011) or with an unsaturated
zone that the water table is a quasi-parallel of the land
surface (e.g. Beven and Kirkby, 1979). The latter implies
a uniform depth of the unsaturated zone [refer to Haitjema
and Mitchell-Bruker (2005) as well as Marklund and
Wörman (2011) for a general discussion on the
limitations of this widely used assumption].
Clearly, treatment of the water table as an a priori

unknown boundary (free boundary) in a coupled
saturated-unsaturated solution would overcome the prob-
lems associated with the topographic assumption. Re-
cently, Ameli and Craig (2014) and Ameli et al. (2013)
have removed the geometrically simple and topography
driven restrictions from analytical schemes and developed
steady-state free boundary models to simulate 2D and 3D
groundwater-surface water interaction in multi-layer
naturally complex hillslopes. They accurately included
the vadose, capillary fringe and ground water zones while
a priori unknown location of the water table was
determined iteratively. Here we extend the multi-layer
approach presented by Ameli et al. (2013) to simulate 2-
D free boundary fully coupled saturated-unsaturated flow
in hillslopes with exponentially depth-decaying saturated
hydraulic conductivity. This grid-free approach can
provide the location of the water table elevation at
different steady-state flow conditions. This solution
exactly satisfies the saturated and unsaturated governing
equations in the entire domain and explicitly takes into
Hydrol. Process. 30, 2438–2450 (2016)
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account the exponential depth decay Ks. This solution
immediately provides potential and velocity fields in the
entire domain with no need for interpolation. This allows
a continuous (rather than discrete as is common in
numerical approaches) particle tracking scheme. Conse-
quently, it opens up, for the first time, an approach for
efficient exploration of the effect of different configura-
tions in the exponential Ks decline on internal subsurface
features such as flow pathlines, velocity and residence
time distributions along these flow paths. The source and
destination of each particle are also determined, along
with the transit time distribution (TTD) of particles
discharged into the stream. The objectives of this paper
are therefore as follows:

1. Present a novel semi-analytical approach for an
integrated simulation of subsurface flow and particle
movement in hillslopes where Ks decays exponentially
with depth.

2. Assess the effect of changing the rate of exponential
decline in Ks with depth on flow pathlines, groundwater
age and velocity distributions, as well as groundwater
table location.

3. Demonstrate the effect of systematic heterogeneity in
saturated hydraulic conductivity on the time-invariant
TTD.

In addressing these questions, we build on recent
experimental studies that have hypothesized that variation
in the shape of TTD can be tied to large-scale heterogene-
ities in subsurface structure (e.g. Hrachowitz et al., 2010).
Our work is the first assessment of such hypotheses using
a robust integrated flow and transport models that respects
the subsurface architecture of catchments where decline
in Ks with depth is rapid.
Figure 1. General schematic of a shallow hillslope with an exponentially de
exponential relationship between saturated hydraulic conductivity and dep
topographic surface (Zt). α is the parameter defining the exponential relations
Ks over the entire soil depth profile. ZWT and ZCF refer to the water table and

and bottom bedrock (Zb) are assu

Copyright © 2015 John Wiley & Sons, Ltd.
METHODS

Figure 1a depicts the general schematic of a shallow
hillslope with an exponentially depth decaying saturat-
ed hydraulic conductivity. A hillslope with length L is
located in the vicinity of a watercourse with a constant
head of Hr. The bottom bedrock zb(x) and sides of the
hillslope are impermeable, and the topographic surface
(zt(x)) is subject to a specified infiltration function
(R(x)) together with a Dirichlet condition along surface
water bodies (e.g. a watercourse with specified width
and head). The saturated–unsaturated interface or top of
the capillary fringe (zCF(x)) is an a priori unknown
boundary which defines both the location of the top of
the saturated zone (including groundwater and capillary
fringe zones) and the bottom of unsaturated zone.
Hereafter, (s) and (u) denote saturated and unsaturated
properties/variables. The a priori unknown water table
(zWT(x)) is also defined as a boundary with zero
pressure head.
In a manner similar to e.g. Ameli et al. (2013) for the

saturated zone the problem is posed in terms of a
discharge potential, ϕs [L2T� 1], defined as

ϕs x; zð Þ ¼ Ks0hs x; zð Þ (1)

where hs(x, z) is the total hydraulic head and Ks0 [LT
-1] is

the saturated hydraulic conductivity along the topo-
graphic surface. Note that saturated hydraulic conduc-
tivity at each internal location (x, z) is defined as
Ks x; zð Þ ¼ Ks0 eα Z�Zt xð Þð Þ , where α is the parameter
defining the exponential relationship between saturated
hydraulic conductivity and depth. A positive α value
generates a depth-decaying exponential relationship
between saturated hydraulic conductivity and depth
(Figure 1b).
pth decaying saturated hydraulic conductivity. (a) hillslope layout, (b) the
th where Ks0 [LT�1] is the saturated hydraulic conductivity along the
hip between Ks and soil depth (i.e. Z� Zt). α = 0 refers to the homogenous
top of the capillary fringe interfaces respectively. The sides of the domain
med as impermeable interfaces

Hydrol. Process. 30, 2438–2450 (2016)
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Mathematical formulation

Using continuity of mass, Darcy’s law and an
exponentially declining relationship between saturated
hydraulic conductivity and depth, the saturated discharge
potential function (ϕs) must satisfy the following
Helmholtz equation:

∂2ϕs

∂x2
þα ∂ϕs

∂z
þ ∂2ϕs

∂z2
¼ 0 (2)

This equation is based on the assumption that Ks is
only the function of z and does not change with x
direction at each z elevation (Ks0 should be constant
along a horizontal datum). To remove this restriction and
implement constant Ks0 along the topographic surface
and not a horizontal datum, we use a coordinate
transform scheme [similar to Craig (2008)] to ensure an
exact implementation of exponential decline in Ks with
soil depth. For the vadose zone, exponential Gardner’s
constitutive function (Gardner, 1958) with an air entry
pressure of (φe) and Gardner’s sorptive number of β
[L�1] is used to define the relationship between
unsaturated hydraulic conductivity (Ku) and pressure
head (φ) as

Ku φ; x; zð Þ ¼ Ks x; zð Þ e β φ�φeð Þð Þ (3)

Sorptive number refers to the relative significance of
gravitational compared with capillary forces (Philip,
1957). This number can be obtained experimentally for
each soil by fitting Gardner’s model to observed suction –
hydraulic conductivity (or saturation) data. The implemen-
tation of a vadose zone solution in terms of a Kirchhoff
potential ϕu [L2T� 1] accompanied by the Gardner
relationship [Equation (3)], facilitate the linearization
process of the nonlinear Richards Equation [refer to Ameli
et al. (2013) and Bakker and Nieber (2004) for more detail].
Here, at each coordinate (x, z), the Kirchhoff potential is a
function of pressure (suction) head φ [L] as

ϕu φð Þ ¼ ∫φ�∞Ks0 e β η�φeð Þð Þdη φ < φe (4)

ϕu φð Þ ¼ Ke

β
exp βφð Þ (5)

whereKe=Ks0 exp(�βφe) [LT�1]. Now from the non-linear
steady-state form of Richards’ equation,

∂
∂x

Ku
∂φ
∂x

� �
þ ∂
∂z

Ku
∂φ
∂z

� �
þ ∂

∂z
Ku φð Þ ¼ 0 (6)

and given the Equation (3) for Ku and Equation (4) for
ϕu,we can derive an equivalent linear 2D governing
Copyright © 2015 John Wiley & Sons, Ltd.
equation for the vadose zone in terms of Kirchhoff
potential:

∂2 ϕu

∂x2
þ ∂2 ϕu

∂z2
þ αþ βð Þ ∂ ϕu

∂z
þ αβð Þ ϕu ¼ 0 (7)

Again, the previously mentioned equation is based on
the assumption of a constant saturated hydraulic conduc-
tivity (Ks0) along a horizontal datum. This limitation in
representing a constant Ks0 that follows the ground
surface is overcome here as well through coordinate
transformation. Although the Ks exponentially varies with
depth, a uniform Gardner’s sorptive number (β) and air
entry pressure is assumed for the entire unsaturated
domain. This assumption is common in development of
unsaturated models in multi-layer or exponentially
varying Ks systems (e.g. Srivastava and Yeh, 1991;
Warrick and Knight, 2003; Warrick et al., 2008). Across
the sides of the domain in both unsaturated and saturated
zones, no-flow conditions in the x-direction are imposed
(Figure 1a) as

∂ϕu

∂x
0; zð Þ ¼ 0 (8a)

∂ϕu

∂x
L; zð Þ ¼ 0 (8b)

∂ϕs

∂x
0; zð Þ ¼ 0 (8c)

∂ϕs

∂x
L; zð Þ ¼ 0 (8d)

where L is the domain length. The topographic surface is
subject to an arbitrary (but predefined) infiltration–
evapotranspiration function R(x) [LT�1]:

∂ϕu

∂η
x; zt xð Þð Þ ¼ R xð Þ (9)

R (x) is taken as positive for infiltration and negative for
evapotranspiration. The solution derived herein can be used in
combination with any arbitrary infiltration/evapotranspiration
function [as shown by Ameli et al. (2013)]; however, we
consider a uniform infiltration for the test cases assessed in
this paper. At the surface of a watercourse a uniform
hydraulic head (Hr) is applied and along the bottom
bedrock, a no-flow condition is imposed as

∂ϕs

∂η
x; zb xð Þð Þ ¼ 0 (10)

Furthermore, continuity of flux and pressure head must
be enforced along the boundary between unsaturated and
Hydrol. Process. 30, 2438–2450 (2016)
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saturated zones, i.e. the top of capillary fringe (ZCF in
Figure 1a):

∂ϕu

∂η
x; z�cf xð Þ� � ¼ ∂ϕs

∂η
x; zþcf xð Þ� �

(11)

ϕs

Ks x; zcf xð Þð Þ x; zþcf xð Þ� �� zþcf xð Þ ¼ φu x; z�cf xð Þ� � ¼ φe (12)

InEquations, (9) to (11), η is the coordinate normal to each
surface which is either the topographic surface, zt(x), bottom
bedrock, zb(x), or the top of capillary fringe zcf(x). The
normal first order derivative (∂ϕ∂η) along these surfaces would
be decomposed into vertical and horizontal components
[refer to Ameli and Craig (2014) for more detail].
Using the separation of variables method and in a

manner similar to Wang et al. (2011) the general series
solution to the saturated governing equation [Equation
(2)] with no-flow conditions along the sides of the
saturated domain [Equations (8c) and (8d)] is
obtained as

ϕs x; zð Þ ¼ A0 þ
XN

n¼1
ðAn cos

nπ
L
x

� �
exp γnzð Þ

h i

þBn cos
nπ
L
x

� �
exp γnzð Þ�Þ

h
(13)

where γn ¼ �α
2 þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2nπ

L

� �2q
, γn ¼ �α

2 � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2nπ

L

� �2q

In Equation (13), N is the total number of terms in the
series solution, n represents the coefficient index and An,
Bn are the unknown series coefficients associated with the
nth coefficient index. Similarly, the general series solution
to the unsaturated governing equation [Equation (7)] is
obtained as

ϕu x; zð Þ ¼ C0 exp �βzð Þ½ �

�
XM
m¼1

ðCm cos
mπ
L

x
� �

exp £mzð Þ
h i £m

mπ
L

þDm cos
mπ
L

x
� �

exp £mz
� �	 £m

mπ
L

Þ



(14)

where £m ¼ � αþβð Þ
2 þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ βð Þ2 � 4αβ þ 2nπ

L

� �2q
,

£m ¼ � αþβð Þ
2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ βð Þ2 � 4αβ þ 2nπ

L

� �2q
In the above equation, M is the total number of series

terms, m refers to the coefficient index and Cm, Dm are the
unknown series coefficients associated with the mth
coefficient index.
The unknown coefficients (An, Bn and C m, D m) are

calculated to complete the potential solutions [Equations
Copyright © 2015 John Wiley & Sons, Ltd.
(13) and (14)]. These coefficients are obtained by
imposing the continuity and boundary conditions [Equa-
tions (9–12)] along associated interfaces (topographic
surface, bottom bedrock and the top of capillary fringe).
To impose these conditions, a least squares numerical
algorithm is applied at a set of evenly-spaced control
points (NC) located along the previously mentioned
interfaces. The a priori unknown top of the capillary
fringe interface, zCF(x, y), is obtained through a robust
iterative scheme [for details of the iterative scheme
readers are referred to Ameli et al. (2013)]. The water
table elevation, zWT(x, y), is then located as an interface
with zero pressure head.

Particle tracking and residence times

Derivatives of Equation (13) with respect to x and z
provide a continuous field of Darcy fluxes in x (qsx (x, z))
and z (qsz (x, z)) directions throughout the entire saturated
zone. Darcy–Buckingham fluxes in the unsaturated zone
can also be obtained as follows

qux x; zð Þ ¼ eα z�Zt xð Þð Þ dϕu x; zð Þ
dx

&quz x; zð Þ

¼ eα z�Zt xð Þð Þ dϕu x; zð Þ
dz

þ βϕu x; zð Þ

 	

(15)

Continuous fields of pore velocity in x and z
directions are subsequently obtained by dividing Darcy
and Darcy-Buckingham fluxes by moisture content. In the
saturated zone, the moisture content is equal to the
saturated moisture content (porosity), which is assumed
as 0.50 for the test cases assessed in this paper. In the
unsaturated zone, moisture content is obtained based on the
suction pressure head at each location. The calculated
continuous fields of pore velocity (in both directions and
both zones) are then used to track particles and generate
pathlines from the topographic surface to the water course
using a Runge Kutta algorithm. Here, we only consider the
effect of advective particle movement, although the
proposed particle tracking method is also flexible to take
into account the effects of dispersion and diffusion.
The simulated pathlines are then employed to obtain

time invariant advective groundwater age and transit time.
Here, the simulated transit times are fitted by a Gamma
distribution to obtain the hillslope TTD. The expression for
the Gamma distribution probability density function (pdf)
can be expressed as a function of the transit time (τ) as

p τð Þ ¼ τa�1

baГ að Þ e
�τb (16)

where b is a scale parameter, a is a Gamma shape parameter
and Г is theGamma function. Note that the product of a and
Hydrol. Process. 30, 2438–2450 (2016)
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b represents the mean transit time (τ0). Many numerical
and/or experimental studies have suggested that Gamma
distribution can appropriately emulate the behaviour of
short and long term time invariant TTDs compared with the
other models (Kirchner et al., 2000; Fiori and Russo, 2008;
Hrachowitz et al., 2009; Godsey et al., 2010). As the
Gamma shape parameter (a) varies, additionally, this
distribution can represent (and approximate) other distri-
butions that are used for the purpose of determination of
TTD. For example, as a approaches 1, the Gamma
distribution represents an exponential distribution (p(τ) =
1
b e

�τb ). Gamma distributions with a Gamma shape
parameter in the range between 0.25 to 0.75 can exhibit
a fractal scaling behaviour (Gisiger, 2001) and as the
shape parameter approaches 0.5 this fractal behaviour
becomes stronger (Kirchner et al., 2001). Gamma
distributions also approximate power law distributions
[p(τ)≈ τa � 1] with the advantage that the gamma
distribution is integrable at large transit times; the power
law distribution may exhibit an infinite mean ground-
water age (e.g. Kirchner et al., 2000; Cvetkovic and
Haggerty, 2002). Gamma distribution is also more
efficient than two parallel linear reservoir models
(Weiler et al., 2003) because the flow partitioning does
not have to be known a priori.
Figure 2. Flow pathline distribution and water table (green dashed line) interf
(α). (a) α = 3, (b) α = 2, (c) α = 1 and (d) α = 0 (homogenous case). τσ, τυ and τ
entire hillslope respectively. The watercourse is located at the left side of the d

at Zb

Copyright © 2015 John Wiley & Sons, Ltd.
MODEL ASSESSMENT AND APPLICATION

In this section we assess the numerical behaviour of the
semi-analytical series solution method for the simulation
of saturated-unsaturated flow in a hypothetical hillslope.
The saturated and unsaturated governing equations
[Equations (2) and (7)] as well as the exponential decline
in Ks with depth are met exactly in the present scheme, but
the boundary conditions [Equations (9–12)] are imposed
using a numerical least square algorithm subject to
numerical error. Imposing boundary conditions also leads
to the determination of unknown coefficients of the
saturated and unsaturated series solutions [Equations (13)
and (14)]. Therefore, we start by assessing the numerical
error in the implementation of boundary conditions. We
then go on to examine the impact of changing the rate of
decline inKswith soil depth on groundwater table location,
flow pathlines, velocity, groundwater age and TTDs.

The hillslope application

We developed a series solution for simulation of 2D
saturated-unsaturated flow in a hypothetical shallow till
hillslope where the saturated hydraulic conductivity
declines exponentially with depth (Figure 2c). The
saturated hydraulic conductivity along the topographic
ace, and groundwater age for different rates in the exponential decline of Ks

0 represent mean groundwater age (day) in saturated, unsaturated zones and
omain within the red circle. The no-flow boundary at the bottom is located
= 0

Hydrol. Process. 30, 2438–2450 (2016)
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surface (Ks0) was set to 60 m/day and the exponential
parameter representing the relationship between saturated
hydraulic conductivity and depthwas assumed as α=11

m . The
unsaturated hydraulic conductivity properties [Equation (3)]
including air entry pressure (φe) and Gardner’s parameter
(β) were set to�0.05m and 0.25 1

m respectively. An average
porosity equal to 0.50 was considered for the entire domain;
thiswas used for the purpose of obtaining pore velocity from
Darcy and Darcy-Buckingham fluxes [Equation (15)]. An
infiltration rate of R=1.5×10�3m/day was considered,
which is identical to the subsurface discharge rate to the
stream for this steady-state analysis. The hillslope length
(distance from stream to water divide) and average angle
were 80 m and 5% respectively. The assumed hillslope
geometry, hydrological and hydrogeological properties
used for this hypothetical example can be found in the
boreal/hemiboreal landscape of Canada, Fennoscandia and
many other places. Along the watercourse located at the
left of the domain (Figure 2c), a uniform head of
Hr=1.45m was established. The least square solution
was obtained using NC=160 evenly spaced control points
per interface (zt, zb and zCF in Figure 1a). For the saturated
zone solution [Equation (13)] and unsaturated zone
solution [Equation (14)], a small number of series terms
of N=140 andM=140 respectively were used [in total 562
(2N+1+2M+1)]. After 50 iterations the model has
converged on the location of the a priori unknown top of
the capillary fringe interface. The water table was also
defined as an interface of zero pressure head (green dashed
lines in Figure 2c).
Figure 3. The normalized error at 160 points located across each boundary
boundary condition, εfluxCF is the normalized error in the continuity of flux alo
continuity of head along the top of capillary fringe and εfluxb refers to the norma

normalized with respect to infiltration rate and head erro

Copyright © 2015 John Wiley & Sons, Ltd.
Boundary condition assessment

Here, the least square errors in boundary conditions
[Equations (9–12)] are evaluated along each interface at
points located halfway between the control points used
within the least squares solution as follows:

εfluxt xð Þ ¼
∂ϕu
∂η x; zt xð Þð Þ � R

R
(17a)

εfluxb xð Þ ¼
∂ϕs
∂η x; zb xð Þð Þ

R
(17b)

εfluxCF xð Þ ¼
∂ϕu
∂η x; z�cf xð Þ� � � ∂ϕs

∂η x; zþcf xð Þ� �
R

(17c)

εheadCF xð Þ ¼ φu x; z�cf xð Þ� �� φe

Hr
(17d)
εfluxt , εfluxb and εfluxCF refer to normalized (with respect to
infiltration rate) least square flux error along the
topographic surface (zt), bottom bedrock (zb) and the a
priori unknown top of the capillary fringe (zCF) interfaces
respectively. The εheadCF also refers to the normalized (with
respect to watercourse head) least square head error along
the top of the capillary fringe (zCF) interface. These errors
were within acceptable ranges with a maximum of
5×10�4, 5 ×10�5, 6 ×10�8 and 5×10�6 for εfluxt , εfluxCF ,
εheadCF and εfluxb respectively (Figure 3). Here, a maximum of
interface. εfluxt refers to the normalized flux error in topographic surface
ng the top of capillary fringe, εheadCF represents the normalized error in the
lized error along the bottom bedrock boundary condition. Flux errors were
rs were normalized with respect to water course head
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5 × 10�4 (0.05%) normalized flux error along the
topographic surface means that more than 99.95% of
the desired infiltration rate (i.e. 1.5 ×10�3m/day) meets
along this interface. The least square errors also resemble
a white noise which implies that there is not any specific
trend in these errors.
Impact of systematic heterogeneity in Ks on subsurface
flow characteristic

The model was used to illustrate the impact of
changing the rate of decline in Ks with depth on the
groundwater table location, flow pathlines, velocity,
groundwater age and dimensionless TTDs. Different α
values equal to 0 (homogenous case), 1 1

m (original case
study), 2 1

m and 3 1
m were used while the remaining

parameters were the same as in the original example
(Figure 2). Given an identical saturated hydraulic
conductivity of Ks0 = 60m/day along the topographic
surface, the more rapidly Ks declines (i.e. the larger the
value of α), the more nearer the surface the water table
elevation becomes. There is also an increase in deviation
from verticality of flow in the unsaturated zone. Deep
circulation further away from the watercourse is reduced,
generating fewer flow pathlines in the deeper portions of
the hillslope near the water divide. Superficial flow in the
vicinity of the watercourse (the discharge area) increases
because the water table is raised to reach the higher
saturated hydraulic conductivity closer to the topographic
surface. The mean groundwater age in both the saturated
Figure 4. Effect of systematic exponential decline in Ks with depth on the rela
(d) α = 0. In each figure, velocities were norma

Copyright © 2015 John Wiley & Sons, Ltd.
and unsaturated zones (and therefore in total) also
increases as the rate of decline in Ks with depth increases.
The rate of increase in mean groundwater age is more
pronounced in the saturated zone compared with the
unsaturated zone which can be attributed to a decrease in
unsaturated zone thickness as α increases.
The rate of decline in Ks also affects the particle pore

(relative) velocity distribution (Figure 4). This effect on
saturated zone velocity is complex and varies depending
upon the distance from the watercourse. For the case of
homogenous Ks (α=0), saturated velocity increases
smoothly (and uniformly with depth) towards the water
course (Figure 4d). As α increases, the saturated zone
relative velocity increases sharply (and non-uniformly
with depth) towards the water course. The proportion of
the saturated aquifer with a very small relative velocity
also increases (this slow moving water is found far from
the stream at depth). Furthermore, the saturated relative
velocity in discharge area near the watercourse is uniform
with depth for the case of homogenous Ks and decreases
with depth as α increases. In other words, systematic
declines in Ks with depth increases the velocity of shallow
flow relative to flow deeper in the soil profile in both the
vicinity of the watercourse and further away. The rate of
Ks decline does not affect unsaturated (relative) velocity
substantially. Given an identical saturated hydraulic
conductivity along the topographic surface for all α
values, at a specific depth in the unsaturated zone,
saturated hydraulic conductivity is lower for a larger α;
however, this may be nullified by higher moisture
tive velocity distribution of flow particles. (a) α = 3, (b) α = 2, (c) α = 1 and
lized with respect to the maximum velocity
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content, and therefore, higher unsaturated hydraulic
conductivity at this depth because the water table
elevation is higher for a larger α (as shown in Figure 2).
Groundwater age patterns are a manifestation of flow

pathlines and velocity distributions, which are both
affected by how quickly the saturated hydraulic conduc-
tivity decreases (Figure 5). Indeed as the rate of Ks change
with depth increases, there is a systematic increase in the
disparity of the groundwater age across the hillslope
including groundwater age reaching the watercourse. The
‘tail’ of older groundwater is found further from the
stream and at greater depths.
The increasing disparity in velocity and ages of the

water as α increases is reflected in the fitted transit time
pdf for water in the unsaturated zone (Figure 6a), the
saturated zone (Figure 6b) and the entire hillslope (Figure 6c).
The variability of transit times relative to mean
unsaturated groundwater age (τυ) decreases as α
increases; this is because of the fact that the thickness
of unsaturated zone becomes more uniform (Figure 6a).
In the saturated zone, the dimensionless transit time pdf
exhibits a sharper decay at the shorter transit time end of
the distribution with a more prominent tail of older water
as α increases (Figure 6b). In other words, the frequency
of both very young and very old water increases. The
mean saturated transit time (τσ) also increases from 155 to
616days (Figure 2).
In the entire hillslope the dimensionless pdf of the fitted

transit times indicates that the percentage of both young
Figure 5. Effect of the rate of Ks exponential decrease with depth on ground
case). Ages (τ) are normalized with respect to τ0 which refer

Copyright © 2015 John Wiley & Sons, Ltd.
and old waters increases with an increase in the rate of Ks

decline with depth (Figure 6c). For the range of α values
considered here the TTD of the entire hillslope is almost
similar to that of saturated zone. Furthermore, the Gamma
shape parameter decreases from 0.90 for the homogenous
case (α=0) to 0.51 for the most rapid decline in Ks (α=3);
this suggests that the TTD of the entire hillslope varies
from (almost) exponential distribution to a general
Gamma distribution with a fractal behaviour as systematic
exponential decline in Ks with depth increases. The mean
transit time in the entire hillslope also increases from 161
to 636days with rates almost similar to the saturated zone
mean transit time (Figure 2).
DISCUSSION

This paper presented and employed a new grid-free semi-
analytical method for simulating saturated-unsaturated
flow and particle movements in hillslopes where there is
an exponential decrease in saturated hydraulic conduc-
tivity (Ks) with soil depth. The real usefulness of this
steady-state solution versus available analytical, numer-
ical and conceptual models for catchments characterized
by this type of subsurface soil architecture is that this
integrated flow and transport scheme breaks from the
topography-driven assumption (i.e. the water table and
the hydraulic gradient of the saturated zone follow the
slope of the topography) by allowing the calculation of an
water age pattern. (a) α = 3, (b) α = 2, (c) α = 1 and (d) α = 0 (homogenous
s to mean groundwater age corresponding to each α value
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a priori unknown water table location and capillary
fringe. This solution exactly and efficiently satisfies the
continuity of mass, as well Darcy’s law in the saturated
zone and Darcy–Buckingham’s law in the unsaturated
zone; albeit under the assumption that Gardner’s model
can emulate the suction-hydraulic conductivity behaviour
in the unsaturated zone.
In our application of the model, a wide range in the

exponential relationship (α) between saturated hydraulic
conductivity (Ks) and soil depth were simulated, from the
case of a uniform soil profile (α= 0) to a strong
heterogeneity (α=3). This approach can quickly (without
any interpolation process as is common in discrete
numerical approaches) provide continuous potential and
particle velocity fields, consistent with the degree of
heterogeneity, within the entire hillslope. This can be
used in an integrated flow and transport modelling
framework to efficiently track the particles, generate flow
pathlines, define the sources and the residence time of
each particle at each location within the hillslope and
determine the TTD. These are all key factors in describing
catchment hydrology and improving our understanding of
hydrological processes (Hewlett and Troendle, 1975;
McDonnell and Beven, 2014). The integrated flow and
transport semi-analytical method presented here has great
potential for efficient exploring the major controls on
subsurface flow and supporting the formulation of
hypotheses about system functioning in catchments where
a rapid decline in Ks with depth challenges other models.
Copyright © 2015 John Wiley & Sons, Ltd.
Steady-state assumption

The conceptual, numerical and analytical models that
include a representation of the effect of exponential
decline in Ks, typically employ a steady-state assumption
(e.g. Cardenas and Jiang, 2010; Jiang et al., 2010; Zlotnik
et al., 2011) or assume a succession of steady-state
situation for groundwater level variations (e.g. Beven and
Kirkby, 1979; Seibert, 1999). The solution presented in
this paper is also makes this assumption. We know that
subsurface flow and TTD are by nature time variant
(Hrachowitz et al., 2010; Botter et al., 2011; Rinaldo
et al., 2011; Botter, 2012; Klaus et al., 2015), and vary
with wetness condition (Heidbüchel et al., 2013) as well
as precipitation regime (Sayama and McDonnell, 2009).
The limitations of the steady-state assumption need to be
recognized, and a time variant version of this semi-
analytical integrated flow and transport model would be
desirable. In the future this might be accomplished by
adding a Laplace Transform simulator (Bakker, 2013) to
the present solution. Notwithstanding, we believe that the
benefits of the grid-free method presented here justify use
of this current steady-state version of the semi-analytical
solution in the simulation of catchment–water course
interactions in till-mantled environments. Seibert et al.
(2003a) has shown that the groundwater level- discharge
relationship can approximate a steady-state condition
within tens of metres of the stream channel in glacial till
hillslopes where transmissivity feedback controls the
Hydrol. Process. 30, 2438–2450 (2016)
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subsurface flow. Additionally, the storage in the unsatu-
rated zone can often be close to a steady-state with the
water table (Seibert et al., 2003b). This steady-state
model is thus a good point of departure for an efficient
exploring the behaviour of flow systems that have been
difficult to model using the grid-based numerical scheme;
albeit the latter has the potential to simulate transient
flows. Furthermore, the time invariant TTD may still be
valid for humid catchments (where seasonal rainfall
variation is less significant) and/or if one focuses on long
term behaviour of the catchment (Botter et al., 2010;
Hrachowitz et al., 2010).

Modelling of flow paths, residence time and velocity

The integrated flow and transport semi-analytical series
solution revealed the decisive influence of the rate of
systematic decline in Ks on the internal characteristics of a
hillslope in terms of groundwater age, velocity and flow
paths patterns. As the rate of decline in Ks increases, a
systematic ageing occurs in the entire hillslope, together
with a broader range of ages. The groundwater
discharging into the water course also becomes older.
Our example results also show that the rate of Ks decline
with depth (α) influences the velocity pattern, with a
dependence on the distance to the stream. The effect of α
on the unsaturated zone velocity is much smaller than in
the shallow saturated portion of the aquifer. The effect of
α is strongest in the vicinity of the water course in the
superficial layers of the saturated zone where flow rates
increase markedly as α increases. Our results also suggest
a pronounced focusing of lateral flows to the most
superficial layers of the saturated soil as the rate of decline
in Ks with depth increases; this also corroborates with the
findings of Weyman (1973). This behaviour has been
hypothesized as a feature of the transmissivity feedback
mechanism in glacial till hillslopes where Ks declines
exponentially with depth, but this is the first time that the
implications have been quantified for the entire hillslope
flow system where the requirements for the conservation
of mass have been satisfied.

Transit time distribution

The transit time of subsurface water from ground
surface to the stream determines the type and rate of many
processes occurring in surface, near surface and deep
environments (Pinay et al., 2015). The variability of
transit times relative to mean groundwater age reveals the
variability of flow pathlines and velocity distribution
within the subsurface (Godsey et al., 2010). The
variability of transit times can be quantified by the shape
parameter of the TTD. This parameter decreases as the
variability increases. As stated earlier, the Gamma
distributions with a Gamma shape parameter in the range
Copyright © 2015 John Wiley & Sons, Ltd.
between 0.25 and 0.75 demonstrates a fractal scaling
behaviour (Gisiger, 2001), and this fractal behaviour
becomes stronger as the shape parameter approaches 0.5
(Kirchner et al., 2001). Godsey et al. (2010) used spectral
analysis on the long term tracer time series of 22
catchments in North America and Europe to calculate
Gamma distribution shape parameters and found values
ranging from 0.35 to 0.78. They also suggested that the
widely used exponential distribution of TTD (with
Gamma shape parameters equal to 1) cannot emulate
the behaviour of these catchments. Hrachowitz et al.
(2009) also reported a Gamma parameter of 0.5 for the
LochArd catchment inWaleswhere transmissivity feedback
controls subsurface flow. This parameter was reported as
0.77 in steady-state numerical analysis performed by Fiori
and Russo (2008) in a mildly heterogeneous domain.
A few experimental and numerical analyses hypothe-

sized that the variation of the Gamma shape parameter
can be attributed to large-scale heterogeneities in
subsurface structure (Fiori and Russo, 2008; Hrachowitz
et al., 2009; Hrachowitz et al., 2010). However, this
hypothesis has not been rigorously evaluated using an
integrated flow and transport simulation except for a few
cases where subsurface heterogeneity has implicitly been
considered by imposing a large dispersion coefficient
(Kirchner et al., 2001; Kollet and Maxwell, 2008). The
present study that simulates explicitly the effect of a
systematic decline in saturated hydraulic conductivity
with depth on saturated and unsaturated TTDs corrobo-
rates the earlier indications and speculations that Ks

variation has a decisive impact on the TTD. Our results
show that as the rate of change in hydraulic conductivity
increases with depth (i.e. as α increases from 0 to 3), the
fitted shape parameter of Gamma distribution in the entire
hillslope varies from 0.90 to 0.51. This implies that TTD
varies from an approximate exponential toward a strong
fractal behaviour. Indeed, the greater the saturated
hydraulic conductivity contrast (α) is, the smaller the
value of the Gamma shape parameter becomes. This is
associated with greater the spatial variability of ground-
water age, velocity and flow pathlines inside the
catchment. The conductivity contrast is related to the
presence of macropores (e.g. Beven and Germann, 2013),
recurring superficial soil frost and impermeable (or low
permeable) bedrock underlying the permeable soil (e.g.
Ameli et al., 2015) that create a large-scale, systematic
heterogeneity in the hydraulic conductivity of a natural
hillslope. Our results also suggest that the Gamma shape
parameter can be a good metric to determine the relative
degree of soil heterogeneity (i.e. decline of ks with depth)
in contrasting catchments where time series of tracer
concentration are available to enable an estimate of the
TTD.The current study also shows that as the rate of
decline in saturated hydraulic conductivity increases, the
Hydrol. Process. 30, 2438–2450 (2016)
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behaviour of the transit time of the entire hillslope
approaches the behaviour of the saturated zone transit time.
This finding is in agreement with the numerical experiment
of Kollet and Maxwell (2008). This may suggest that future
models built for the purpose of explicit determination of
TTDmay not need to take into account the unsaturated zone
in heterogeneous hillslopes with shallow groundwater
tables. This is useful because inclusion of the unsaturated
zone with non-linear behaviour can be challenging for
physically based numerical and analytical models.
CONCLUSION

This paper presents a novel continuous grid-free approach
for efficiently and explicitly calculating the internal
catchment subsurface flow features (flow path line,
residence time and TTD) where the saturated hydraulic
conductivity profile changes exponentially with depth.
Keith Beven’s early work was among the first to recognize
this importance, but it has been difficult to efficiently
incorporate an exponential decline in saturated hydraulic
conductivity with soil depth, together with an integrated
flow and transport solution. The use of our new analytical
model to explore the implications of rapid decline in
saturated hydraulic conductivity with depth reveals how
important this is for key features of catchment response.
These include a focusing of lateral flow through the
superficial saturated soils in the riparian zone and alteration
of the tails in the TTD to allow for larger proportions of both
much younger and older water. The efficiency of this model
opens up new possibilities for exploring the role of
catchment soil architecture on the flow paths and residence
times of water in an important class of catchments with
shallow flow systems in unconsolidated materials. The
major limitation of the approachwe present here is that it is a
steady-state representation. Nevertheless, this is an exciting
starting point for inquiry that uses analytical models to
create and test hypotheses of flow and transport phenomena
– building on the legacy of Keith Beven’s work.
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