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Abstract Classification is essential in the study of natural systems, yet hydrology has no formal way to
structure the climatic forcing that underlies hydrologic response. Various climate classification systems can
be borrowed from other disciplines but these are based on different organizing principles than a hydrological
classification might need. This work presents a hydrologically informed way to quantify global climates,
explicitly addressing the shortcomings in earlier climate classifications. In this work, causal factors (climate)
and hydrologic response (streamflow) are separated, meaning that our classification scheme is based only on
climatic information and can be evaluated with independent streamflow data. Using gridded global climate
data, we calculate three dimensionless indices per grid cell, describing annual aridity, aridity seasonality,
and precipitation-as-snow. We use these indices to create several climate groups and define the membership
degree of 1,103 catchments to each of the climate groups, based on each catchment’s climate. Streamflow
patterns within each group tend to be similar, and tend to be different between groups. Visual comparison
of flow regimes and Wilcoxon two-sample statistical tests on 16 streamflow signatures show that this
index-based approach is more effective than the often-used Köppen-Geiger classification for grouping
hydrologically similar catchments. Climate forcing exerts a strong control on typical hydrologic response and
we show that at the global scale both change gradually in space. We argue that hydrologists should consider
the hydroclimate as a continuous spectrum defined by the three climate indices, on which all catchments
are positioned and show examples of this in a regionalization context.

1. Introduction

Classification is an essential step in understanding natural phenomena, as evidenced by globally agreed-
upon classification schemes in many different disciplines and a strong expressed need for a catchment
classification scheme in hydrology (e.g., McDonnell & Woods, 2004; Wagener et al., 2007). Well-known classi-
fication examples are the periodic table that chemistry uses to group elements with similar properties (e.g.,
Scerri, 2007) and Linnaean taxonomy as used in biology to group organisms based on similarity of their char-
acteristics (e.g., de Queiroz & Gauthier, 1992). Classifying phenomena into groups with similar characteristics
allows transfer of knowledge from well-observed members of the group to members about which less is
known. In hydrology, defining similarity between catchments plays a crucial role in enabling predictions in
ungauged basins (Wagener et al., 2007).

In complex systems as are common in Earth sciences, classification is not straightforward (McDonnell &
Woods, 2004). Many different classification schemes are available, each with a different focus or underlying
principles, and the choice for one is often motivated by a study’s particular needs. All classification schemes,
however, aim to group those elements of a system that are similar, and separate them from groups of other
elements that are in some significant way different from the others. For example, soils can be classified with
an international system based on their diagnostic horizons, properties, and materials (IUSS Working Group
WRB, 2015), but various national systems are used as well (e.g., Baize & Girard, 2009; Hewitt, 1992; Soil
Classification Working Group, 1991). Lakes can be classified on a variety of characteristics, for example, ther-
mal properties (Forel, 1880, cited Hutchinson & Löffler, 1956), mixing properties (Lewis 1983), trophic status
(Canfield et al., 1983), or a combination of hydrological, chemical, and biological properties (Johnes et al.,
1994). Similarly, different schemes are available to classify vegetation, for example, by using plants’ survival
strategy (Grime, 1974), a hierarchical scheme based on leaf cover area akin to Linnaean taxonomy (Viereck
et al., 1992) or as a function of dominant prevailing climate known as life zones (Holdridge, 1967).

Catchments are a common object of study within hydrology. The need for a catchment classification scheme
(e.g., McDonnell & Woods, 2004; Wagener et al., 2007) is usually interpreted as defining catchment similarity
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based on hydrological response, presumed drivers of the streamflow response, or a combination of both.
Wagener et al. (2007) lists possible options for classification based on hydro-climatic region, catchment struc-
ture, or functional catchment response. Hydrologic similarity (i.e., grouping similar catchments) follows from
mapping the relationship between these aspects. An early example of a global classification of river regimes
(Haines et al., 1988) defines 15 different typical annual streamflow patterns across the globe. Increases in data
availability have allowedmore detailed regional studies covering, for example, Australia (Kennard et al., 2010)
and the United States (Archfield et al., 2014). Looking just at causal factors underlying streamflow, examples
of regional classifications exist based on soil characteristics (Lilly, 2010) and climate (Berghuijs et al., 2014).
Many studies combine both approaches, using causal factors, such as average aridity, average catchment
slope, and land use, together with streamflow characteristics, often in the form of streamflow signatures such
asmean flow and slope of the flow duration curve, to group similar catchments (e.g., Coopersmith et al., 2012;
Kuentz et al., 2016; Sawicz et al., 2011, 2014; Yadav et al., 2007). Whereas a wide variety of metrics andmodels
are used to describe catchment structure and functional response, there seems to be at least some consensus
on how hydro-climatic aspects can be conceptualized: available water (precipitation) and energy (tempera-
ture and evaporation) interact within the catchment to control the water balance. Understanding of this
principle has led to the Budyko-curve on an annual scale (Budyko, 1974) and shown the importance of
within-year variation of climate (e.g., Milly, 1994).

In catchment classification studies, climate is often considered in a basic form (e.g., annual average aridity) or
in direct relation to streamflow response (e.g., runoff ratio, streamflow, and elasticity) but recent work shows
that a more nuanced approach that describes the influence of climatic input on typical flow regimesmight be
appropriate (Addor et al., 2017, 2018; Berghuijs et al., 2014). With three dimensionless numbers that summar-
ize the climate’s aridity, precipitation timing, and snowiness, typical flow regimes in the United States can be
classified into 10 distinct groups (Berghuijs et al., 2014). Addor et al. (2017) present an extended set of U.S.
catchments, including information about each catchment’s climate (using three very similar indices), topo-
graphy, soils, and vegetation. In later work (Addor et al., 2018), they correlate this information with stream-
flow signatures for each catchment and find that climate, as expressed by the three indices, has the
strongest correlation with streamflow signature values for this set of U.S. data. Information about climate,
even expressed as three simple numbers, can thus be used to explain broad streamflow patterns.

Several global climate classifications exist, but these are mostly bio-climatic in origin, and thus do not expli-
citly include those aspects of climate regimes that are important influences on hydrology. The original
Köppen scheme (work by Köppen in the late 19th and early 20th century) is for an important part based
on observations of vegetation, which could be used as a proxy for prevailing climate in times when
large-scale climate data were unavailable (Peel et al., 2007). Köppen’s classification inspired several other clas-
sification schemes that tried to improve the correspondence between climate zones and observed global
vegetation patterns (Geiger, 1954; Thornthwaite, 1948; Trewartha & Horn, 1968). These schemes use
hierarchical rules, mainly based on temperature and to a lesser extent precipitation thresholds, to define
climatic zones. They are still regularly updated with new data (e.g., Belda et al., 2014; Kottek et al., 2006;
Peel et al., 2007). Vahl’s climatic divisions (Reumert, 1946) attempt to address the arbitrary nature of
Köppen’s thresholds and certain mismatches between the classification scheme and observations, by using
fewer hierarchical divisions and introducing precipitation probabilities. Holdridge Life Zones (Holdridge,
1967) and the Thornthwaite classification (Thornthwaite, 1948) move away from using mainly temperature
and precipitation for classification, although they are still bioclimatic in origin. Holdridge uses a combination
of precipitation, potential evapotranspiration (PET), humidity, altitude, and latitude to define biomes.
Thornthwaite attempts to address the perceived arbitrary nature of the Köppen-Geiger thresholds and to
create a more rational classification scheme. Thornthwaite uses climate observations from the United
States to create a classification approach that relies on a precipitation-effectiveness index, a moisture index,
thermal efficiency index, and the absolute value of PET. However, despite these improved alternatives, the
original Köppen-Geiger scheme remains widely used today.

Currently, the main available climate classifications suffer from significant shortcomings when applied to
hydrology. Haines et al. (1988) tested the ability of the Köppen-Geiger classification to predict typical global
runoff regimes and found some relationship between climate zones and flow regimes, but also considerable
spread in the data: a flow regimemight occur in many climate zones, and a single climate zone might contain
many flow regimes. Based on recent work (Addor et al., 2018; Berghuijs et al., 2014) in the United States, we
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can hypothesize that this is likely because Köppen-like climate classification schemes lack hydrologically rele-
vant details, in the form of the interaction between water and energy availability, climate seasonality, and
snowpack formation. Thornthwaite’s classification comes close to addressing this, but is only based on U.S.
data and untested in its accuracy for predicting global hydrologic regimes. Additionally, Thornthwaite
already noted that “variations in the heat factor of climate do not generally result in the development of shar-
ply defined boundaries between vegetation formations” and that “the boundaries separating tropical,
mesothermal, microthermal and subpolar climates are vague and ill-defined” (Thornthwaite, 1943), as a point
of potential improvement for classification schemes. Traditionally, classification maps include sharp, unrealis-
tic, boundaries between different classes. More recently, advances in data sciences (e.g., Schwämmle &
Jensen, 2010) have led to more nuanced classification schemes in hydrology where catchments can belong
to several classes at the same time, but with differing degrees of membership to each class (e.g., Sawicz
et al., 2011).

This study addresses an identified need for a global hydrologically informed climate classification scheme
that (i) corresponds to observed similarities and differences in observed hydrological response and (ii) avoids
introducing artificial boundaries between classes. We choose to address climate alone, without consideration
of catchment characteristics, as a first step to developing a more general catchment classification.

2. Data

This study first uses gridded climate data to summarize the world’s climate with several climate indices and
uses these to define different climate clusters. Then, 1,103 catchments are associated with the appropriate
climate clusters using the catchments’ locations and boundaries, after which streamflow data from the catch-
ments are used to evaluate the hydrological usefulness of the climate clusters.

2.1. Climate Data

This study uses monthly average climate values from the CRU TS v3.23 data set (Harris et al., 2014), for the
climatic variables precipitation (P), number of rain days per month (N, defined as days with P ≥ 0.1 mm), tem-
perature (T), and PET (Ep). These data are available at a 0.5° × 0.5° resolution for the Earth’s land areas, exclud-
ing Antarctica. The data set offers so-called primary variables, which include P, N, and T, that are a reanalysis
of station observations and existing climatology. The secondary variables, such as Ep, are estimated from the
primary variables. Ep is estimated with a variant of the Penman-Monteith formula (Allen et al., 1998; Harris
et al., 2014).

Ep values are missing for approximately 7.3% of global land cells due to incomplete coverage of the wind
speed data needed for Ep estimation. Ep values are highly spatially correlated (average correlation coeffi-
cient = 0.99 in latitude direction, average 0.72 in longitude direction), and most of the missing values are
bordered by cells for which Ep values are available. Nearly all missing values can be filled with a weighted
nearest-neighbor approach, apart from several small islands that are too isolated for correlations to be a
useful approach.

For this study, P/T/N/Ep data for 1984–2014 are averaged per month to find a typical year (e.g., the typical
January P is the average of all 30 January P values from 1984 to 2014), to approximate the typical annual var-
iation in all four climate variables.

2.2. Streamflow Data

The Global Runoff Data Centre (The Global Runoff Data Centre, 2017b) manages a large database of river
discharge data. This study uses a subset of data known as Pristine River Basins that contain daily streamflow
data for 1,182 gauging stations worldwide for the study period 1984–2014. The catchments in this data set
are asserted to have minimal development and river regulations and diversions. In addition, records for each
catchment cover at least 20 years (overview of record lengths in Text S1.3) and exceed a certain accuracy
threshold (The Global Runoff Data Centre, 2017a). We applied quality assurance procedures to the data,
and as a result, 79 catchments were excluded from this study (details in Text S1.2), leaving 1,103 stations
for use in this study.

Catchment boundary information is available for 718 of the Global Runoff Data Centre (GRDC) Pristine Basins
(The Global Runoff Data Centre, 2011). The remaining 449 catchments in the Pristine Basins set vary in area
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from 0.69 km2 to 4,680,000 km2, with median 596 km2. Larger catchments can cover many grid cells, and
without information on the catchments’ boundaries, it is impossible to tell how varied the climate within
each catchment is. Therefore, we include only those catchments with an area smaller than or equivalent to
the approximate area of nine grid cells, for which the climate at each gauge’s location might reasonably
be considered representative of the climate in the whole catchment. This limits both the uncertainty about
the prevailing climate in these catchments, and the number of catchments that must be excluded from
further analysis (details in Text S1.1).

We create a typical streamflow year for each catchment from daily streamflow data, by taking the median
flow for each Julian day (e.g., the typical 1 January flow refers to the median of all available 1 January for
a particular place). We also align all flow records in time so that t = 1 coincides with the start of the
hydrological/water year for each location. Using the median flow decreases the influence of extreme events
in the data and is preferable to the mean because of the skewed nature of flow variability. Catchments are
spread across both hemispheres, so hydrological years are preferable to calendar years for comparison pur-
poses. It is easier to visually assess similarities between flow patterns when distinctive features such as the
seasonal flow peaks are aligned. By convention the water year in the Northern Hemisphere runs from
October to September (e.g., Beck et al., 2014; U.S. Geological Survey, 2016); however, for the Southern
Hemisphere, both April to March (Beck et al., 2014) and July to June (Utah State University, 2017) are in
use. While conventions such as these can be useful on a small scale, on a global scale, these are too general.
Therefore, we use a 61-day moving window to find the period of maximum flow in a typical year for each
catchment and assume that the water year has started 120 days before this point (Figure 1). Both numbers
are determined through trial-and-error and were found to give the best results (in terms of ease of visual
comparison of flow similarity) for the data used in this study, but should be revisited if a more comprehen-
sive data set is available.

3. Method

This study creates a climate classification scheme that summarizes global climate patterns as a causal factor
of global streamflow response. Causal factors (climate) and response (streamflow) are separated, meaning

Figure 1. Location and boundaries (if available, circles with size relative to catchment area are used when not) of GRDC Pristine catchments. Catchments for which no
boundary data is available are only used if the approximate catchment length is smaller or equal to a climate correlation threshold length and removed from the
analysis if larger. Coloring indicates approximate start of the hydrological year, here defined as the 120 days before the time of the 61-day average maximum flow.
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that our classification scheme is based on only climatic information and can be independently
evaluated with streamflow data. First, we summarize the global climate with several gridded dimensionless
indices (section 3.1). These climatic indices are clustered into fuzzy groups with a fuzzy c-means clustering
algorithm (section 3.2) to define several climates that are representative of the land surface. We then
evaluate the correspondence of the climatic clusters with global streamflow response, testing the hypoth-
esis that locations within a cluster experience similar flow patterns while locations in different clusters show
different streamflow regimes. We evaluate this both qualitatively through comparing typical seasonal flow
patterns within and between climate clusters, and quantitatively through streamflow signature values
and statistical tests. We compare the effectiveness of our climatic clustering with that of the Köppen-
Geiger classification, testing the hypothesis that our scheme improves on another often-used method
(section 3.3). Last, we investigate the potential of abandoning the idea of climate classes or clusters and
show the benefits of viewing the global hydro-climate as a continuum rather than a patchwork of different
classes (section 3.4).

3.1. Dimensionless Climate Indices

The climate at any given location influences the processes near the land surface and those concerning
precipitation and evaporation. The balance between available water and energy determines whether
water will remain on land or be returned to the atmosphere. Periods with lower temperatures can lead
to snowpack formation, and precipitation intensity can influence whether water will infiltrate into the soil
or become surface runoff. However, precipitation and temperature (and by extension PET) patterns are
variable throughout the year and precipitation and temperature peaks are not necessarily in phase. It is
thus plausible that our indices need not only to cover annual averages but also to provide a measure
of the seasonal variability of climate variables. This leads to the hypothesis that in addition to the total
annual precipitation, five different climate aspects might be hydrologically relevant (e.g., Addor et al.,
2017, 2018; Berghuijs et al., 2014; Milly, 1994; Woods, 2003, 2009): (i) the annual average aridity, specifying
the ratio of available energy and water; (ii) the seasonality in aridity, indicating if seasonal water and
energy distributions are in or out of phase; (iii) the fraction of precipitation that falls as snow, indicating
whether precipitation will be (temporarily) stored on the land surface; (iv) the average rainfall intensity,
showing whether rainfall will exceed infiltration rates and thus produce surface runoff; and (v) the season-
ality of rainfall intensity, indicating whether infiltration excess runoff is more likely to occur in certain parts
of the year.

We limit this work to aridity and snow indices for several reasons. First, although precipitation intensity can
vary significantly across the world, its impact on local hydrology (i.e., whether rain infiltrates or becomes
surface flow) depends on local catchment characteristics. Accounting for global differences in soil types
and other catchment characteristics is considered beyond the scope of this work. Second, the CRU TS cli-
mate data set lacks information on the submonthly time scale, and precipitation intensity can thus only
be quantified by dividing the monthly precipitation totals by the number of rain days per month (days with
P ≥ 0.1 mm). Both the annual average and seasonality of this approximate intensity are strongly inversely
correlated with the annual average aridity (Spearman rank correlation coefficient R < �0.8 across all land
cells) and thus are unlikely to add any significant new information at the global scale. Similarly, we consid-
ered using the absolute annual average precipitation (mm/year) as a metric, but this is strongly correlated
with annual average aridity (R = 0.74). Several tests during clustering (not shown for brevity) confirm that
these metrics indeed add very little independent information at the global scale. Third, earlier work
(Addor et al., 2017, 2018; Berghuijs et al., 2014) shows that average and seasonal aridity indices and one
snow index are strongly related to seasonal streamflow patterns, without considering rainfall intensity or
absolute precipitation totals.

Using CRU TS climate data averaged into a typical year (section 2.1), we calculate three climate indices for
each 0.5° land cell. We use a version of Thornthwaite’s moisture index MI (Willmott & Feddema, 1992) to
express average aridity (Im) and its seasonality (Im, r), and a numerical implementation of the fraction of
annual precipitation that occurs as snowfall fs (Woods, 2009). These indices have been used for climate clas-
sification before but not in this particular combination (e.g., Willmott & Feddema, 1992, for MI; Berghuijs et al.,
2014, for fs). These indices describe the processes of interest using bounded intervals, which is useful for inter-
pretation and clustering analysis.
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MI tð Þ ¼
1� EP tð Þ

P tð Þ ; P tð Þ > Ep tð Þ
0 ; P tð Þ ¼ Ep tð Þ

P tð Þ
EP tð Þ � 1 ; P tð Þ < Ep tð Þ

8>>>>><
>>>>>:

(1)

Im ¼ 1
12

Xt¼12

t¼1
MI tð Þ (2)

Im;r ¼ max MI 1; 2;…12ð Þð Þ � min MI 1; 2;…12ð Þð Þ (3)

f s ¼
P

P T tð Þ≤T0ð Þ
Pt¼12

t¼1
P tð Þ

(4)

P (t), Ep (t), and T (t) are mean monthly observations of precipitation, PET, and temperature in the CRU TS data
set. T0 is a threshold temperature below which precipitation is assumed to occur as snow, here set at 0 °C. The
annual average moisture index Im has range [�1, 1] where �1 indicates the most arid (water-limited) condi-
tions and 1 indicates the most humid (energy-limited) conditions. The moisture index seasonality Im, r has
range [0, 2] where 0 indicates that there are no intraannual changes in the water/energy budget and 2 indi-
cates that the climate switches between fully arid (Im = �1) and fully saturated (Im = 1) within a single year. fs
has range [0,1] where 0 indicates no snowfall in a year and 1 that all precipitation falls as snow. Note that fs = 0
does not imply that the temperature does not go below the threshold temperature T0, but merely that during
this period no precipitation occurs. The indices rely on similar information and express phenomena with simi-
lar underlying causes (e.g., seasonality of aridity might be caused by a strong summer-winter contrast, which
may also increase the likelihood of snowfall) so some correlation between the indices is unavoidable. The
Spearman rank correlation between Im and Im,r is 0.27, between Im and fs 0.27, and between Im,r and fs
0.37. These are considered to be sufficiently independent for use in this study, because each index has a dif-
ferent physical interpretation.

3.2. Selecting Representative Climates for Comparison With the Köppen-Geiger Classification

Traditional climate classification schemes use distinct boundaries between climate classes (e.g., Geiger, 1954;
Kottek et al., 2006; Peel et al., 2007; Trewartha & Horn, 1968), but Thornthwaite already pointed out that cli-
mates change gradually in space and distinct boundaries do not do this justice (Thornthwaite, 1943).
However, sharp boundaries are a logical and inescapable result of the classification method that underlies
Köppen-like classifications. In this work, we argue that the global hydro-climate should be seen as a contin-
uous spectrum and that imposing boundaries on this spectrum should generally be avoided. However, for
illustration purposes, we use an automated fuzzy c-means clustering algorithm (Bezdec, 1981) to select sev-
eral representative points in the climate space described by our three indices. Each location (grid cell in the
global data) belongs with a certain degree of membership to each representative climate, based on the simi-
larity of each location’s climate index values to the climate in each representative point. Memberships can
vary from 0 (the location does not belong to this representative climate at all) to 1 (the location’s climate is
the same as the representative climate), with the possibility for a location to belong simultaneously to several
representative climates. Using these representative climates, it is straightforward to compare how similar the
hydrologic regimes are for locations with the same Köppen-Geiger class compared to locations with the same
representative climate.

While the fuzzy c-means algorithm can objectively create clusters from data, it does require human input in
finding the appropriate settings and determining the appropriate number of clusters. We use Matlab’s
c-means implementation (function fcm) in a multistart framework to account for the inherent randomness
resulting from its use of random initial cluster centroids. Before clustering, we standardize the values of
our climate indices so that each has a range (0,1), to avoid biasing the clustering procedure toward the index
with the largest range. The fuzzy c-means procedure uses a so-called fuzzifier parameter to allow data points
to belong to different clusters through fuzzy membership. This parameter can be used to decrease the influ-
ence of data points that are near the boundaries between two clusters when determining the cluster centroid
positions (Schwämmle & Jensen, 2010). This value is kept at its default value of 2. The number of
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representative climates was determined through trial-and-error, by performing the clustering procedure
with 2 to 30 clusters and analyzing the resulting climate clusters. We did not use any river flow data to either
create or help choose the number of climate clusters. We chose 18 clusters for communication purposes in
this study, because this provides an adequate amount of detail but does not create overly specific geographi-
cally focused clusters. However, we emphasize that our key goal is the identification of climate indices for glo-
bal hydrology, rather than the set of 18 clusters.

3.3. Effectiveness of Hydrologic Grouping Based on Representative Climates Versus Köppen-Geiger
Classes

We use GRDC river flow data for 1,103 catchments to compare how well hydrologic regimes can be grouped
based on our representative climates. We also group the same catchments based on their Köppen-Geiger cli-
mate class, to assess whether our approach improves upon this alternative. The success of this grouping exer-
cise is determined with a qualitative approach to investigate typical streamflow patterns per group and a
quantitative approach to investigate differences between streamflow signatures in each cluster. First, we
define the membership degree of 1,103 catchments to all 18 representative climates, using the catchment-
averaged values of our three climate indices. For catchments without boundary information we assume that
the outlet location is representative of the whole catchment. We can then show the typical flows per repre-
sentative climate, using every catchment’s membership degree to determine how closely the climate in each
catchment resembles that of each representative climate. We assess the typical flows in a qualitative way.

We also assess the differences between flows per representative climate quantitatively through streamflow
signatures and statistical tests. Olden and Poff (2003) categorize 171 streamflow signatures into five main
types relating to flow event magnitude, frequency, duration, timing, and rate of change, distinguishing
between high and low flow conditions within the first three categories. This study uses 16 signatures that
cover these five categories (Table 1), mainly following recommendations from Kuentz et al. (2016) and
Addor et al. (2017). For each catchment, we calculate a signature’s value per hydrological year and then take
the average of these yearly signature values. We repeat this for all 16 signatures. Correlation analysis (not
shown here for brevity) indicates that each signature contains some independent information although there
is duplication of information as well. We consider this acceptable for our purposes because the signatures are
only used to evaluate the two classification schemes and are not part of the classificationmethods themselves.
The classification thus remains unbiased by potential duplicate information in the streamflow signatures.

Our null hypothesis is that there are no significant differences between signature values calculated for flows
in different representative climates. The alternative is that there are differences between signature values of
flows per representative climate, which indicates that our climate classification scheme can tell us something
informative about the hydrologic response. The Wilcoxon two-sample test (Wilcoxon, 1945, cited Walpole,
1968, p. 232) is a suitable statistical test to compare a signature’s values between two climate clusters,
because the test assumes no knowledge of the distribution and parameters of the total population, and
allows comparing samples with very different sizes. It allows testing of distributions (e.g., the values of a
signature calculated for 70 catchments in climate I and 115 catchments in climate II) with H0 : μ1 = μ2. We
apply this test to all climate cluster pairs and for all signatures. The sheer number of tests makes it likely that
we will find significant differences through chance alone. We therefore investigate the number of signatures
for which a climate pair is statistically different: if a pair is different for 16 out of 16 signatures, we can assume
that typical streamflow for these pairs is different. If a statistical difference is only found for 1 out 16
signatures, it is more likely that we have found this result through chance. We repeat this analysis on the
catchment grouping created based on the Köppen-Geiger class of each catchment and comment on
the differences.

3.4. Beyond Catchment Grouping and Towards Climatic Assessment on a Continuous Spectrum

In addition to being a quantified way to communicate the climate of hydrological systems, these indices can
be used as a rational way to transfer hydrological information from gauged to ungauged basins. This can also
be a starting point to define more powerful hydrological similarity metrics, eventually resulting in a hydrolo-
gical catchment classification scheme. In the second part of this paper we briefly explore the predictive
power of the three climate indices. Each catchment is treated as ungauged in turn, and we use climatic simi-
larity as a very preliminary flow prediction method. Climatic similarity is expressed as those catchments that
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(1) belong to the same Köppen-Geiger class, (2) belong to the same climate cluster, or (3) are nearby based on
standardized Euclidean distance in climate index space (so that every index has range [0,1]) expressed by the
Im, Im,r, and fs indices. In the latter case, we investigate both (3a) distance-based weighting of all catchments
and (3b) distance-based weighting of the five catchments that are climatically the most similar to the
“ungauged” catchment. We estimate both the flow regime of each ungauged catchment and values for
the 16 signatures. The accuracy metric used to compare estimated and observed flow regimes is the Kling-
Gupta Efficiency (KGE; Gupta et al., 2009). The metric used to compare estimated and observed signature
values is the absolute error.

4. Results
4.1. Approximating Climatic Gradients With Representative Climates

Figure 2 shows that values for the three climate indices (annual average aridity, Im; the seasonal change in
aridity, Im,r; and the fraction of precipitation as snowfall, fs) generally change gradually in space
(Figures 2c–2e for individual indices and Figure 2b for a map combining all three indices into a single global
overview). The presence of mountain ranges leads to relatively sharp transitions in climate (e.g., Canadian
Rockies, Andes, European Alps, and Himalayas). Large areas of deserts are visible in red. These are arid loca-
tions with high PET compared to available precipitation, only small seasonal changes in this ratio and no
snowfall. Very wet regions (dark green) are centered mostly around the equator. These are areas with a con-
tinual water surplus and low snowfall. Traditionally, this climate is associated with tropical rain forests but
other areas (e.g., Scotland, Japan, and northern New Zealand) show similar index values, even if the under-
lying climatic drivers are different in absolute terms. Regions in bright green and yellow show transitional

Table 1
Overview of the Hydrological Signatures Used in This Study

Signature Unit Description References

Magnitude
1 Mean flow (mm/d) Mean of daily flow -
11 Q5 (mm/d) 5th percentile of daily flow Kuentz et al. (2016)
12 Q95 (mm/d) 95th percentile of daily flow Kuentz et al. (2016)
14 Skewness (�) Mean divided by median of daily flow Kuentz et al. (2016)
2 Baseflow index (�) Baseflow fraction of total flow Gustard et al. (1992)
4 High flow discharge (�) 90th percentile divided by median flow Kuentz et al. (2016)

Frequency
10 No flow frequency (�) Normalized average frequency of no flow (number

of days with 0 flow)
-

8 Low flow frequency (�) Normalized average frequency of low flow (number
of days with flow <0.2*mean)

Olden and Poff (2003); Westerberg
and McMillan (2015)

6 High flow frequency (�) Normalized average frequency of high flow (number
of days with flow >9*median)

Clausen and Biggs (2000); Westerberg
and McMillan (2015)

Duration
9 No flow duration (�) Normalized average duration of no flow (number

of consecutive days with 0 flow)
-

7 Low flow duration (�) Normalized average duration of low flow (number
of consecutive days <0.2*mean)

Olden and Poff (2003); Westerberg
and McMillan (2015)

5 High flow duration (�) Normalized average duration of high flow (number
of consecutive days >9*median)

Clausen and Biggs (2000); Westerberg
and McMillan (2015)

Timing
16 Half flow date (�) Fraction of year when 50% flow occurs Court (1962)
15 Half flow interval (�) Fraction of year in which 25th to 75th percentile

flow occurs
Court (1962)

Rate of change
3 Flow duration curve slope (�) FDC slope between 33rd and 66th percentile in log space (Yadav et al., 2007)
13 Rising limb density (day�1) Number of rising limbs divided by time that hydrograph

is rising
Sawicz et al. (2014)

Note. Signatures are calculated for every hydrological year available for each catchment, after which we take the mean for each signature across all hydrological
years available for a catchment. Numbering in the leftmost column refers to Figures 7d and 7h.
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zones between constantly arid and constantly wet regions. The transitional zones experience strong
seasonality in their water-energy balance, either through clearly defined wet and dry seasons (seasonal
rain), through summer and winter patterns (seasonal changes in PET) or a combination of both. The blue
and pink regions indicate places where nearly all precipitation occurs as snowfall. Figure 2a further shows
that climates with low seasonality concentrate near both ends of the aridity (Im) axis (bright red and dark
green) and that annual average aridity is not necessarily an accurate representation of month-to-month
aridity, especially in cases where the annual water and energy budgets are approximately balanced (Im = 0).

In this part of the paper, we investigate whether our index-based classification is better suited for grouping
hydrologically similar regimes than the Köppen-Geiger classification is. For a straightforward comparison
with the Köppen-Geiger classes, we define 18 representative climates in our continuous climate-index space.
These give a representative sample of the climate on the land surface. Figure 3a shows that 18 clusters
approximate the climatic gradients in Figure 2b well, but the continuous variation of climate in space makes
it impossible to create completely homogeneous classes where every location has a climate that strongly
resembles that of the representative point it belongs to. Each grid cell is colored based on the climate cluster
that the cell belongs to with the highest degree of membership, here called the “main cluster” for each cell.
Figure 3c shows how high this mainmembership degree is. A membership threshold of 0.5 is commonly seen
as the cell belonging exclusively to its main cluster (Schwämmle & Jensen, 2010). Large areas of high mem-
bership degree values are visible (blue) andmainly occur away from cluster boundaries. However, the gradual
nature of the changes in climate indices makes it difficult to classify all cells in homogenous clusters, as evi-
denced by the large number of cells that have membership degrees <0.5 for their main cluster. These cells
can be thought of as belonging to multiple clusters simultaneously. With 18 clusters, slightly over half (50.4%)
of all land cells have membership degrees >0.5 for their main cluster.

The position of climate cluster centroids (Figure 3b) shows that they are not distributed uniformly in climate
index space and the centroid marker size (larger size indicates that a higher number of land cells have that

Figure 2. overview of average climate index values calculated for 1984–2014. (a) Climate index legend to help interpret Figure 2b, showing how values on the three
climate index axes determine the final RGB color. The 3-D plot includes all land cells shown in Figure 2b. The colored square shows the color scheme at seven
predetermined points in five different Im,Im,r planes along the fs axis. (b) World map with each 0.5° resolution grid cell with local average aridity (red), aridity sea-
sonality (green), and fraction precipitation as snowfall (blue) determining the RGB color scale. (c–e) Plots of average aridity Im (red), aridity seasonality Im,r (green), and
fraction of precipitation as snow fs (blue), respectively, showing how each index varies globally.
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cluster as their main cluster) shows that certain climates are more prevalent than others. The centroids
approximate the pattern of all individual cells in climate index space (Figure 2b), showing where this
pattern is dense and comparatively sparse. This is a result of the clustering procedure trying to maximize
within-cluster similarity and between-cluster differences. In the absence of clearly defined clusters/groups
in the data, as is the case with the gradual changes in climate, the algorithm will struggle to draw
appropriate boundaries between clusters and reverts to positioning the cluster centroids in response to
point density. Figure 3d quantifies the number of cells for which each climate cluster is the main cluster
and the degree of membership to the main cluster. Hot and very arid deserts (clusters 1 and 2) are both
common and well-defined. Clusters 16 and 17 are on the other extremes (being very wet and snow-
dominated, respectively) and are also well defined but contain fewer cells. In most clusters however,
membership degrees are generally lower (<0.5, red shading), because locations tend to lie between
several representative climate points. Clusters 1, 2, 16, and 17 are relatively well defined because their
climates can be roughly approximated with terms as “always” and “no” (e.g., climate 1: always arid, no
seasonality, and no snow). The other clusters are all positioned at some nonextreme point on each climate
index axis, and this makes it impossible to draw distinct appropriate boundaries between different climatic
zones in these cases.

4.2. Effectiveness of Hydrologic Grouping
4.2.1. Comparison of Climatic Gradients and Köppen-Geiger Classes
The proposed new climate indices do not map directly onto Köppen-Geiger classes. The subclasses of the tro-
pical (A) and arid (B) Köppen-Geiger main classes are relatively distinct from one another in the climate space
defined by indices Im, Im,r, and fs, whereas the subclasses of the colder temperate (C), continental (D) and polar
(E) classes cover relatively similar regions in climate index space (Figure 4). This can be seen around the equa-
tor, in North-Africa, the Middle-East, and most of Australia, where the Köppen-Geiger map (Figure 4b) is

Figure 3. Results of fuzzy c-means clustering performed on climatic indices. (a) The cluster to which a cell belongs with the highest degree of membership (here
called main cluster). (b) Location of climate cluster centroids in climate index space, with marker size corresponding to the number of cells for which a cluster is
the main cluster. (c) The degree of membership with which each cell belongs to its main cluster; membership of each cell to the remaining 17 non-main clusters is by
definition lower than its membership to the main cluster. (d) Number of cells for which a cluster is the main cluster (bar height) and degree of membership
distribution per cluster (bar shading, legend in Figure 4c).
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similar to the climate index map (Figure 4a). These regions are either very dry (through a combination of high
temperatures and low precipitation) or very wet (resulting from very high precipitation) and see virtually no
snowfall. These characteristics are captured well through the threshold approach in the Köppen-Geiger
classification scheme. The hydrologically relevant nuances of precipitation differences in colder climates
are not well captured in the Köppen-Geiger scheme. This can be seen in, for example, the eastern United
States, Alaska, Greenland, most of Northern Europe, and Russia, where the Köppen-Geiger boundaries are
nearly exclusively determined by temperature thresholds. Different degrees of relative water availability
and snowpack formation are lost in this classification. While the thresholds are an appropriate choice to
define vegetation zones, as is the original goal of the Köppen-Geiger scheme, this approach is less relevant
from a hydrological point of view. The climate indices contain more hydrologically relevant information, as
the following sections will show.
4.2.2. Qualitative Comparison of Grouped Flow Regimes
Grouping the typical flow regime of all catchments according to the catchments’ climate indices (Figure 5)
shows that seasonal flow patterns gradually evolve along climate gradients. Clusters 4, 14, and 15 are similar
with respect to the aridity seasonality Im, r and snow fs metrics but are progressively less arid (Im metric). As a
result of this increased water availability, the clusters’ typical flow patterns look similar but average flows
become progressively higher. Clusters 1, 2, 3, 4, 5, and 6 are similarly arid (Im) and low on snow (fs) but their
aridity is progressively more seasonal (Im, r). The latter clusters thus occasionally experience a water-surplus,
even if on average these places are severely water-limited. As a result, the average flow is low for all clusters,
but a progressively higher seasonal flow peak can be seen. Clusters 6, 8, 11, 12, and 13 have similar values for
the snow (fs) and seasonality (Im, r) metrics but are progressively less arid. As a result of this increased water
availability, average flows become progressively higher and the main flow peak (likely resulting from snow-
melt since fs > 0 at the cluster centroids) becomes progressively more pronounced.

Typical flow features such as average flowmagnitude and flow peak height and shape are distinctly different
between clusters, but climate can only inform us about average seasonal patterns. For example, the flow peak
shape in snow-dominated climates (e.g., clusters 13, 12, and 11) shows a much sharper rise and decline than

Figure 4. Comparison of the Köppen-Geiger climate classification and the global distribution of climate index values. (a) Global distribution of climate index values,
as shown in Figure 2a. (b) Köppen-Geiger climate classification (Peel et al., 2007). (c–e) Boxplots of average aridity (Im), seasonality of aridity (Im,r), and fraction of
precipitation as snow (fs) values per Köppen-Geiger class.

10.1029/2018WR022913Water Resources Research

KNOBEN ET AL. 11



elsewhere, presumably due to snow storage and melt processes. In warmer but not water-limited climates
(e.g., clusters 16, 15, and 10) the flow peak rises and declines gradually, presumably as a result of seasonal
changes in water surplus. However, within each cluster, a wide variety of flows are included and what is
true on average for the cluster is not necessarily true for a single specific catchment. In a catchment
classification context, climate is an important driver of hydrologic processes but the influence of the
catchment itself (e.g., topography, vegetation, and anthropogenic influence) cannot be ignored. This is,
however, considered beyond the scope of this work.

Figure 4 showed that Köppen-Geiger main classes A and B show strong correspondence with our more arid
and wet representative climates (e.g., climates 1–4, and 10, 15, and 16, respectively). This pattern repeats with
respect to grouping flow regimes by Köppen-Geiger classes (Figure 6): grouped flows for subclasses in the
tropical (A) zone are very similar to the flows in representative climates 16, 15, and 10 (compare Figure 5),
which have low aridity and no snowfall. The flows in the arid (B) subclasses are similar to our arid clusters
1–4. However, subclasses of C–E climates do not seem to group flow patterns in any meaningful way. To
aid in this comparison, each flow record is colored according to our catchment-averaged climatic index
values, and within main classes A and B, the coloring seems relatively consistent. In climates C–E however,
catchments with very different hydro-climates are lumped in each subclass and do not reveal any obvious
typical flow pattern. For example, subclass ET (polar tundra) contains flow patterns ranging from being nearly
zero all-year round (orange), to very high, snowmelt-dominated regimes (blue-green). The snowmelt regimes
are not as obviously grouped in the Köppen-Geiger classes as they are in the climate-index clusters (compare
Figures 5 and 6).
4.2.3. Quantitative Comparison of Grouped Streamflow Signatures
We use catchment membership degrees to create a weighted average streamflow signature value for 16
different streamflow signatures for each of the 18 representative climates. Statistical tests show that 145
out of the 153 possible combinations of two representative climates are statistically different at a 0.01 signif-
icance level. Another 7 out of 153 pairs are different at a 0.1 significance level and only a single pair shows no
significant difference (p-value of 0.28; Figure 7d). Figure 7a shows an example of weighted average signature
values per representative climate, here showing results for the average_flow signature (overview of all

Figure 5. Typical flow regime for catchments grouped by climate cluster with the membership-weighted weightedmedian in black and the weighted 25th and 75th
percentiles in red. Only catchments with a minimum membership of 0.10 or higher are shown, with darker lines corresponding to higher membership degrees.
Includes all 1103 unique catchments, although catchments may appear in multiple climate plots. Title coloring corresponds to climate cluster centroids (Figures 4a
and 4b). Clusters 8 and 12 are not shown because the data lack climate-specific flow records for these clusters.
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signatures is given in Text S2.2). A clear gradient is visible in the climate space, with the signature value
increasing primarily as aridity decreases and secondarily as seasonality increases. Figure 7b shows
the results of an empirical Wilcoxon test to determine the statistical significance of the differences in
average_flow signature values between all representative climates. This procedure uses the average_flow
signature value for each catchment, coupled with the catchment’s membership degree (Figure 7c) to each
representative climate, to estimate an empirical p-value (details in Text S2.1). Most representative climates
have statistically different average_flow signature values at a 0.01 level (dark blue shading), but not all
climate pairs are significantly different based on this single signature (white and red shades). Figure 7d
shows the lowest p-value per climate pair across all 16 signatures and shows that 148 out of 153 climate
pairs are different at the 0.05 significance level (bottom-left section of the figure). The top-right part of the
figure shows the number of signatures for which the empirical p-value is below 0.05. The prevalence of
darker shades indicates that climate pairs are statistically different for multiple signatures, indicating that
our clustering approach can indeed group catchments with similar flow characteristics.

Climate pairs 6-8, 7-8, 6-7, 4-5, and 17-18 are not statistically different on any of the signatures, possibly due to
a lack of climate-specific flow records. If there are statistical differences to be found, either these differences
manifest in flow characteristics not captured in the chosen signatures, or we lack climate-specific (high mem-
bership) flow records to construct an image of how a typical flowpattern for each representative climate looks.
It is unlikely that the signatures are poorly chosen because they are adequate to distinguish between all other
climate pairs (Figure 7d). Lack of climate-specific flow records is a likely explanation in the case of representa-
tive climate 18 (only four catchments with membership>0.1; Figure 7c) and 17 (only 1 catchment has mem-
bership>0.1; Figure 7c). Similarly, climates 6–8 are close together in climate space and membership degrees
of all catchments to each of these three representative climates are quite similar (Figure 7c). It is likely that the
1,103 catchments lack the diversity that would allow the signatures to distinguish better between these three
representative climates. This same explanation might be applied to climates 4 and 5. The alternative to these
explanations is that there are no statistical differences between the typical flows of these representative
climates; that is, our assumption that the typical flow regime should be different between these

Figure 6. Typical annual flow for all 1,103 catchments per Köppen-Geiger climate class with the median (black) and 25th and 75th percentiles (red). Typical flows
from individual catchments are colored by the catchment’s climate index values as used with the climate index approach.
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representative climates, because the catchments associated with each climate have different hydro-climates,
is false. However, given the success of the method with other climate pairs that are close together in climate
space (e.g., 10-14, 11-12, and 1-2), lack of climate-specific flow records seems the more likely explanation.

Even though Köppen-Geiger has more climate classes than our climate-index method, analysis of signature
values shows that grouping catchments by their dominant Köppen-Geiger climate class leads to fewer

Figure 7. (a–d) Quantitative differences between grouped flows regimes using climate clusters; (e–h) quantitative differences between grouped flows regimes using
Köppen-Geiger classes. (a and e) Value of the average_flow signature per climate cluster/Köppen-Geiger class. Similar plots for all signatures in Text S2.2. (a) Values
are calculated as a weighted average from all 1,103 catchments, with weights being each catchment’s membership to a cluster. Numbers refer to climate clusters.
(e) Boxplot color refers to the legend in Figure 4. (b and f) Statistical tests to determine whether values of the average_flow signature per cluster/Köppen-Geiger class
are statistically different. The blue shades show p ≤ 0.05, the white shades show 0.05 ≤ p ≤ 0.10, and the red shades show p> 0.10. (b) Results of an Empirical Wilcoxon
test (Text S2.1) used with cluster grouping. (f) Regular Wilcoxon test used with Köppen-Geiger grouping. (c and g) Membership degree of catchments (x axis) to
climate cluster/Köppen-Geiger classes (y axis). (c) The darker shades show that a catchment belongs more strongly to a given cluster, and thus contributes more to
the average cluster signature value. (g) All memberships to Köppen-Geiger classes are 1. (d and h) The bottom-left shows the lowest p-value from all 16 signatures,
that is, the largest significant difference between two groups. The number in each cell shows for which signature this lowest p-value is found (see Table 1 for
numbering). The top-right grey shading shows for how many out of 16 signatures we find a significant difference (p ≤ 0.05). (d) Results cluster grouping. (h) Results
Köppen-Geiger grouping.
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distinguishable differences in typical flow patterns (Figure 7). Using the average_flow signature as an
example, catchments in classes A and B seem to be sorted well according to their signature values
(Figure 7e.) This is not the case in classes C–E, where the boxplots for subclasses tend to overlap (e.g.,
for Cfa, Cfb, Dfb, and Dfc, all of which include 90 catchments or more). A Wilcoxon test confirms that
statistically significant differences occur less frequently for the classes C–E than for classes A and B
(Figure 7f). Using all signatures, we can find statistically significant differences in signature values
between most Köppen-Geiger classes (Figure 7h). Where we do not, we likely lack enough catchments in
our data set for that subclass to make proper statistical inferences (i.e., Cwb, Cfc, and Dwc; Figure 7g).
However, in many cases in classes C–E, we only find statistically significant differences in a few out of all
16 signatures (compare grey shades in Figures 7d and 7h). This supports the idea that the temperate (C),
continental (D), and polar (E) Köppen-Geiger classes are not well suited to grouping hydrological
flow regimes.

4.3. Beyond Climate Grouping and Toward a Continuous Representation of Climates

Figure 8a shows the results of treating each catchment as ungauged in turn and using a climatic similarity
approach to estimate the flow regime of this ungauged catchment. Comparing the effectiveness of Köppen-
Geiger classes and our climate clusters, the clusters are somewhat more effective for estimating typical flow
regimes. However, it is not our intent to advocate replacing one set of climate groups with another.
Avoiding groups/clusters and using hydro-climatic similarity only can have strong benefits compared to
the class/cluster approaches. Using just five climatically similar basins to estimate the ungauged flows shows
a significant increase in the number of basins where KGE values of the estimated regime exceeds 0. Quality
of the flow estimates does depend on the number of samples used: using climate-weighted records from

Figure 8. Estimating flow regimes through various definitions of climatic similarity, treating all 1,103 catchments as if they were ungauged in turn. (a) Overview of
sorted KGE values for estimated typical flow regimes, based on various similarity metrics. KGE values below 0 are not shown for clarity. (b–d) Geographical location
of catchments and KGE value for estimated flow regime for each. Catchments with KGE < 0 shown in grey. (b) Estimation of “ungauged” catchment as the
weighted daily mean of the regimes in the five climatically most similar catchments. (c) Estimation of ungauged catchment as the daily mean of the regimes in the
same Köppen-Geiger class. (d) Estimation of ungauged catchment as the daily mean of the regimes in the same climatic cluster.
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1,102 catchments to estimate each ungauged catchment leads to worse results than using either Köppen-
Geiger classes or climate clusters. In these cases, most catchments are dissimilar from the ungauged one
and these flow records dilute the estimate through sheer numbers (even if any individual catchment has
a low weight). Using a small number of climatically similar basins overcomes this issue (within this data
set, climatic similarity consistently outperforms climate clusters when fewer than 150 catchments are
used to estimate any ungauged regime—the best results are obtained when 3–10 climatically similar
catchments are used).

A similar pattern is revealed when climatic similarity is used to estimate signature values for ungauged catch-
ments (Figure 9). Climatic similarity of a few catchments to the target catchment generally gives the lowest
errors across the ensemble of catchments. However, there is considerable spread in performance between
the various signatures. Estimates of signatures associated with the magnitude of various parts of the water
balance (e.g., average flow, q5, and q95) and duration and frequency of high/low/no-flow events seem to
benefit the most from using index-based similarity over other options. Improvements are smaller for signa-
tures related to timing (t50 and t25_75) and rate of change (rising limb density and slope of the flow duration
curve). Using climatic similarity of a few basins to estimate signatures also occasionally results in a higher
occurrence of larger errors than other methods (e.g., for the skew signature). There is a delicate balance
between using all available catchments (weighted by climatic similarity) and using just a few climatically very
similar catchments to create estimates. Using more catchments decreases the risk of selecting a small
number of climatically similar but structurally (in terms of vegetation, geology, etc) different catchments as
donors, but also has the potential to dilute the quality of estimate through the sheer number of dissimilar
basins included. Using fewer catchments can be very accurate due to the absence of dissimilar basins in
the estimate, but leaves one vulnerable for differences in the catchment structure, which this approach does
not account for. In general, results seem to indicate that using climatic similarity expressed through indices is
a promising avenue for catchment classification. With refinement and introduction of catchment character-
istics into the procedure, this approach to transfer knowledge between gauged and ungauged catchments
can potentially be a powerful tool for prediction in ungauged basins.

Figure 9. Cumulative distribution functions of absolute errors in signature value estimation. Signatures are estimated by treating each catchment as ungauged in
turn and using climatic similarity to find donor catchments. Signature values from the donor catchments are averaged to estimate the signature’s value in the
“ungauged” catchment. Climatic similarity is expressed as belonging to the same Köppen-Geiger class (orange), the same climate cluster (light green), or as Euclidean
distance in climate index space expressed by the Im, Im,r, and fs indices. In the latter two cases, the estimated signature value for the ungauged catchments are based
on distance-based weighting of all catchments (red) or the five catchments that are climatically the most similar to the ungauged catchment (dark green).
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5. Discussion

This work presents a hydrologically motivated alternative to traditional climate classification schemes,
accounting for gradual changes in climate and the influence that has on flow regimes and streamflow signa-
tures. This addresses two criticisms of traditional classification schemes used for hydrology, namely, that their
underlying motivation is not hydrological and the subjective nature of the number of classes and their distinct
boundaries. Although we define 18 representative climates, these are intended as a communication device
only, to enable straightforward comparison between our method and the Köppen-Geiger classification.
Section 4.3 shows that clear benefits can be gained by using a continuous hydroclimatic spectrum instead.

We find that three simple climate indices, which quantify a location’s average aridity (Im), the seasonal range
of water-versus-energy availability (Im,r), and the fraction of precipitation that occurs as snowfall (fs), are good
indicators for finding similar hydrological regimes on a continuous scale. To further illustrate this, Figure 10
shows the degree to which all catchments belong to representative climates 16, 15, 9, and 8, respectively,
and how the typical flows that are strongly associated with each cluster look. From climate 16 to 15 to 9,
the index values indicate progressively more arid climates, with increasing aridity seasonality and constant
(nearly zero) snowfall. The corresponding streamflow regimes become lower on average as a result of
increasing average aridity, with lower low flows resulting from the increase in aridity seasonality. From cluster
9 to 8, aridity and seasonality remain constant, but snowfall increases. The corresponding streamflow regimes
in climate 8 are similar to those in climate 9 (both on average and during low flows) but have a much sharper
high flow peak as a result of snow accumulation and melt processes. This reinforces the hypothesis that gra-
dual changes in climatic conditions lead to gradual changes in seasonal streamflow patterns and can be of
importance during catchment classification and catchment similarity studies. Most catchment characteristics
can be described on a continuous scale (e.g., area, elevation, slope, porosity, conductivity, degree of vegeta-
tion cover, and leaf area index), and these results suggest that climate should be treated in the same way,
rather than using discrete classes.

Our findings are in line with earlier work on the relation between seasonal streamflow patterns and climate
(Addor et al., 2017, 2018; Berghuijs et al., 2014) and with work on the suitability of the Köppen-Geiger

Figure 10. (a–d) Membership degree [0,1] of catchments to clusters 16, 15, 9, and 8, respectively (shading), and the catchment-averaged values for the three climate
indices that describe aridity (Im), seasonality of aridity (Im,r), and fraction of precipitation as snowfall (fs). (e–h) Typical streamflow in catchments with climates
similar to representative points 16, 15, 9, and 8, respectively (flows shaded by their degree of membership to the cluster), with the weighted mean (black) and 25th
and 75th percentiles (red).
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classification for mapping global flow regimes (Haines et al., 1988). An important difference is that both
Berghuijs et al. (2014) and Haines et al. (1988) create climatic classes by grouping flow regimes, whereas this
work uses streamflow data only to evaluate the appropriateness of our climate indices in relation to hydro-
logic regimes. The specific climate indices we have chosen are slightly different from those used in
Berghuijs et al. (2014) and Addor et al. (2017), but they are intended to capture the same climatic aspects
(aridity, seasonality, and snow). Both those studies are regional, focusing on the contiguous United States,
and our results indicate that their general findings (i.e., that three climate indices can be used in defining
hydrologic similarity) might be applicable on the global scale as well. Haines et al. (1988) present a global
classification of river flows based on monthly streamflow data and find considerable spread in how their pro-
posed regimes relate to Köppen-Geiger classes, similar to our results. Haines et al. (1988) also compare their
result to an earlier study by Beckinsale (1969), who adapted the Köppen-Geiger classification to apply to river
regimes, and find that “many of the ‘different’ regimes proposed by Beckinsale are in practice found not to be
significantly different at the world scale” (Haines et al., 1988). This is a consequence of their choice to cap the
number of possible regime classes, such that all classes contained a significant (but unspecified) number of
observed flows and were consistent with known geographic features. Analyzing river flows on a continuous
spectrum, such as proposed in this work, rather than using discrete groups would avoid this problem and
allow rarely occurring regimes to be somewhere on this spectrum as well. However, we emphasize that
our work is not intended as a river regime classification scheme (which would necessarily involve accounting
for a catchment’s characteristics as well), but rather presents a hydrologically relevant way of accounting for
the influence of global climates in such a catchment classification.

5.1. On Geographical Proximity of the Catchments

Geographical proximity of catchments could explain similarity between typical flows as well as climatic simi-
larity, but the GRDC catchments are spread out enough in climatic and geographical space that this plays
only a small role. Typical correlation lengths for hydrologic similarity are in the order of 100 to 200 km
(e.g., Castiglioni et al., 2011; Gottschalk et al., 2011; Skøien et al., 2003). Within the GRDC data set, approxi-
mately 1.3% of catchment pairs are within this distance from one another. This can explain certain similarities
in flow patterns per climate cluster (Figure 5), because geographically close catchments are likely to have
high membership degrees to the same representative climate(s). However, nearly all representative climates
include catchments with high degrees of membership from at least two continents and all climates contain
catchments that are far enough apart to ignore spatial correlation (see Text S3). In Figure 11, the typical flows
in representative climate 15 are separated by continent (columns) and degree of membership (rows). Within
a column, flows are relatively similar in pattern and size, which could be explained by relative geographical
proximity (although the catchments still span several hundreds of kilometers). Across columns, however,
especially above 0.50 membership degree, the flows on each of the four continents are remarkably similar.
This reinforces the idea that similar climatic conditions lead to relatively similar flow patterns.

5.2. On the Choice of Climate Indices

Our climate indices express the annual average water and energy budget, the seasonality of water and
energy availability, and the fraction of precipitation that occurs as snowfall. These indices relate to similar cli-
matic attributes as earlier regional studies in the United States (Addor et al., 2017, 2018; Berghuijs et al., 2014)
have used, but we use different equations for aridity and the seasonality of aridity. Our choices are motivated
by both practical concerns and a need to find indices that confer relevant information on a global scale.
Indices on a bounded interval are easy to visualize (in the case of our 3-D climate index space; Figure 2a)
and straightforward to normalize to a [0,1] interval. The latter is useful for clustering analysis and regionaliza-
tion both within this study and for potential later work. Traditionally, aridity is often given as a dryness index
PET/P (e.g., Addor et al., 2017; Berghuijs et al., 2014; Budyko, 1974) with range ([0,∞)). We adopt a moisture
index (Feddema, 2005; Thornthwaite, 1948) instead that expresses the same information but on a bounded
interval [�1,1] and thus fits our criteria better. We have chosen to use the term “seasonality of aridity” over
“precipitation seasonality” as is used in Berghuijs et al. (2014) and Addor et al. (2017). The precipitation sea-
sonality metric is based on an expression of local P and PET time series as sinusoidal functions and finding the
difference between the timing of the P and PET peak. This approach was originally developed in the context
of snow modeling (Woods, 2009) and thus assumes that PET follows a distinct summer-winter pattern due to
temperature seasonality. This assumption is appropriate in the context of the United States but less so toward
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the equator. Furthermore, precipitation seasonality only confers information about timing and not relative
volumes of P and PET. Therefore, we have opted to use the within-year range of our monthly moisture index
as a seasonality metric instead. This metric conveys information about the possible states of water availability
a location can go through, which is relevant information on a global scale (although it has its own limitations,
see section 5.3).

5.3. On Study Limitations

This study has several limitations, which can be improved upon in later work. First, we investigate the relation
between climate and streamflow patterns by comparing averagedmonthly climate values over a 30-year per-
iod and median daily streamflow values. This approach smooths out outliers in both climate and streamflow
data but ignores interannual variability. The results shown in this work form a good basis to investigate inter-
annual variability from. Second, the number of catchments could be increased. The GRDC catchments were
selected for their global nature and availability of daily flow records, but this still leads to an underrepresenta-
tion of African and Asian river systems. Additionally, to keep as many catchments for the analysis as possible,
we have not set an upper bound to catchment size (provided that the catchment boundaries are known). It is
possible that in large catchments not every part of the catchment contributes equally to overall runoff. The
catchment-average climate that we use might thus not be representative of the climate in the runoff gener-
ating part of large catchments. A larger database of river basins would allow us to restrict the analysis to smal-
ler catchments where this issue is unlikely to play a role. Third, the seasonality of aridity metric can be
improved. The metric measures the range between the lowest and highest monthly aridity values (equa-
tion (3)), but this range is not necessarily symmetrical around the average aridity (Im; equation (2)) value.
There is thus a certain amount of nonuniqueness for each combination of Im and Im,r values. For example,
Im = 0 and Im,r = 1 can theoretically mean “this location is on average neither arid nor wet, but reaches a very
arid state at some point during the year,” “it’s neither arid nor wet on average, but has a large water-surplus at
some point,” and everything in between. Extremely asymmetrical occurrences are unlikely though, because
this would require nearly balanced precipitation and PET all-year round, apart from a single extremely
dry/rainy month. The impact of this effect is currently hard to judge but might be investigated through an
increased number of catchments. Another limitation of the Im and Im,r indices is that (unlike the sine curve

Figure 11. Flows from GRDC catchments that have climate cluster 15 as their main cluster (i.e., their highest degree of membership to any cluster is to cluster 15)
separated by continent (columns) and degree of membership (rows). Flow shading corresponds to degree of membership of each individual catchment to cluster 15.
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approach of Milly, 1994) they do not allow us to reconstruct themonthly times series of climate. Other choices
of climate indices could lead to improvements, but the results already look promising: by comparing just three
simple indices, we are able to locate catchments with similar seasonal flow patterns and flow regimes. The cli-
mate index values can be used to define a quantitativemeasure of “climatic similarity” between catchments in
an easier, more succinct way than is possible with earlier climate classification schemes.

6. Conclusions

Hydrology needs its own structured way to quantify climates, acknowledging that climates vary gradually on
a global scale, that distinct boundaries between climate classes do not represent reality well, and that climate
descriptors should explicitly including those climate aspects that drive changes in hydrologic regimes. Until
now, climate classification in hydrology has either used classification schemes from other disciplines (e.g., the
Köppen-Geiger scheme) or used ad-hoc methods (e.g., a within-study selection of metrics such as aridity or
streamflow elasticity). In this work, causal factors (climate) and streamflow response are intentionally sepa-
rated, meaning that the classification scheme presented here is based on only climatic information and
can be evaluated with independent streamflow data. We define the hydro-climate on a global scale, using
three dimensionless indices that describe each location’s aridity, the seasonal changes in aridity, and the frac-
tion of precipitation that occurs as snowfall. Using 1,103 catchments, we show that typical streamflow
regimes and streamflow signature values correlate strongly with the local hydro-climate. Gradual spatial
changes in climatic conditions are accompanied by gradual changes in flow regimes. In a climate classifica-
tion context, using these three indices is a better way to identify hydrologically similar catchments than the
Köppen-Geiger classification. This is partly because the Köppen-Geiger scheme is not hydrologically based
and does not capture the hydrologically relevant nuances of colder climates properly, and partly because
the Köppen-Geiger scheme uses discrete climate classes. The gradual changes in climatic and streamflow
conditions are not adequately captured using discrete classes. Instead, it is more useful to view the global
hydro-climate as a continuous spectrum on which every catchment is located. Regionalization of typical
streamflow patterns and streamflow signature values tends to be better when a small number of climatically
similar basins (i.e., close together in the climate space described by our climate indices) is used instead of
donors chosen based on either Köppen-Geiger or climate cluster grouping. Using the work shown here, a
catchment’s climate can be described with three simple numbers, which allows easier knowledge transfer
between catchments and can form the basis of a catchment classification method.
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Introduction  

These Supplementary materials are provided to support several arguments made in the 

main paper and to provide in-depth explanation of the methodology for reproducibility. 

 

Section S1 deals with preparation of GRDC streamflow data (available on request from 

http://www.bafg.de/GRDC/) This study uses a sub set known as “Climate Sensitive 

Stations Dataset (Pristine River Basins)” (The Global Runoff Data Centre, 2017b) 

downloaded on 16-05-2017. Outlined in S1 are the steps taken to determine which 

catchments for which no catchment boundary information is available should be excluded 

from further analysis (S1.1), results of manual quality assurance (S1.2 and table S1) and 

length of the flow record for the catchments used in this study (S1.3). 
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Section S2 provides details about the calculation of streamflow signatures. Section S2.1 

explains our modifications to the standard Wilcoxon test to create an empirical Wilcoxon 

test, which is used to estimate the statistical significance of differences between weighted 

grouped streamflow signature values. Section S2.2 shows the results of individual 

signature calculations. 

 

Section S3 shows the geographical spread of GRDC catchments, sorted by their main 

clusters. 

 

Text S1.  GRDC catchment and streamflow data 

Out of 1182 available stations, 64 are excluded because no boundary data is available, 

and the catchment area exceeds a size threshold (section S.1.1). Table S1 shows the 

results of a manual quality assurance procedure, which leads us to exclude another 15 

catchments whose data are implausible for pristine catchments (section S.1.2). Section 

S.1.3 shows the length of the flow record for the 1103 catchments that are used in this 

study. 

Text S1.1. Area threshold used to exclude GRDC catchments for which the 

catchment-averaged climate can not be calculated by using catchment boundaries 

Information on catchment boundaries is not available for all catchments in the GRDC 

data set. If boundaries are available, we use this information to calculate a catchment-

averaged climate. Where boundaries are not available, but the catchment is small, we can 

use the climate at location of the catchment’s gauge as representative of the climate in the 

entire catchment. This section describes the procedure used to determine the catchment 

size threshold above which we exclude the catchment from use in this study. The GRDC 

data set provides the location of each catchment’s gauge [latitude and longitude 

coordinates] and the size of the catchment [km2]. 

 

First, we use the square root of catchment area to find the approximate catchment length 

(Figure S1). The majority of catchments for which no boundary information is available, 

have an approximated length smaller than the length of 1 grid cell as used in the climate 

data, and for these no action is necessary. Next, we calculate the correlation length of our 

three climate indices in the latitude and longitude direction (Figure S2). If a catchment’s 

length is too large compared to the distance until which the climate indices are correlated, 

we remove the catchment from the data set. Some subjectivity is involved in choosing a 

threshold level. We need to balance the total number of catchments we can use (which 

favours keeping larger catchments) and ensuring climatic consistency within the 

catchment (which favours keeping only small catchments). We have chosen a threshold 

length of 3 grid cells as an appropriate middle ground. Catchments with an approximated 

length larger than 3 grid cells (approximately 150 km) are removed from further analysis. 
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Figure S1. GRDC Pristine Basins without information on catchment boundaries, sorted 

by approximated catchment length (square root of catchment area). Coloured lines 

indicated the approximated length of 1 to 10 grid cells as used in the CRU TS climate 

data. 312 GRDC Pristine Basins have areas smaller than 1 grid cell. 

 

 

Figure S2. Autocorrelation lengths in longitude (top) and latitude (bottom) direction for 

three climate indices: average annual aridity (left), aridity seasonality (middle) and 

fraction of precipitation as snow (right). Circles are the approximate lengths of all GRDC 
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Pristine Basins for which no boundary information is available, matched up with the 

mean autocorrelation per grid cell distance (red line). 

Text S1.2. Quality control of flow data 

All 1182 Global Runoff Data Centre locations in the “pristine basins” data set have been 

visually inspected for data errors.  Error! Reference source not found. shows 56 

catchments that warranted further investigation and the result of this investigation. We 

exclude 5 stations due to doubtful data quality, another 5 stations due evidence of 

hydropower dam construction during the study period, 3 stations due to missing 

catchment area values and 2 stations due to highly implausible catchment area values. 

Two stations are suspected of consistent underestimation of flows during part of the time 

series, and data were adjusted to better fit the remainder of the time series (Figure S4). 

For a further 19 stations we removed part of the time series due to measurement errors 

(e.g. inexplicable jumps in flow at the start of a new month/year, Figure S5-S9). Error! 

Reference source not found. summarizes the results of the quality assurance procedure. 

 

 

Figure S3. Location and boundaries (where available) of GRDC Pristine Basins used in 

this study (blue) and Pristine Basins that are removed from further analysis for various 

reasons (red). Catchments for which no boundary data is available are used if their 

approximated length is smaller or equal to a climate correlation threshold and removed 

from the analysis if larger. The correlation threshold length is set at 3 times the size of a 

grid cell on which climate data is available, i.e. 0.5° (see S1.1). 

Table S1. GRDC pristine basins that have been investigated further, based on visual 

inspection of data. Locations with extreme outlier-like peaks have been kept included if 

additional sources confirmed those peaks to be floods. Extreme peaks with no outside 

confirmation are treated as data errors. 
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Figure S4. Correction of flow underestimation for two GRDC catchments (see Table S1 

for details). 

 

 

Figure S5. Correction of flow records for GRDC catchments (see Table S1 for details). 
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Figure S6. Correction of flow records for GRDC catchments (see Table S1 for details). 

 

 

Figure S7. Correction of flow records for GRDC catchments (see Table S1 for details). 

 



 

 

7 

 

 

Figure S8. Correction of flow records for GRDC catchments (see Table S1 for details). 

 

 

Figure S9. Correction of flow records for GRDC catchments (see Table S1 for details). 

 

Text S1.3. Flow record length 

Flow records within the GRDC Pristine Basins data set need to cover a minimum of 20 

years, but these do not necessarily overlap with the study period of 1984-2014. Figure 

S10 shows a histogram of the number of years within the period 1984-2014 available. 

1041 catchments (94.3%) used in this study have data records longer than 20 years. 
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Figure S10. Overview of record length of flow data for the catchments in the GRDC 

Pristine River basins data set. 

 

Text S2. Significance testing and signature values 

This section gives details about the empirical Wilcoxon test used (section S2.1), 

streamflow signature values for 16 signatures, based on catchment grouping by 

representative climate and by Köppen-Geiger class (section S2.2) and the statistical 

difference in signature values per representative climate and Köppen-Geiger class (S2.3). 

 

Text S2.1. Empirical Wilcoxon statistical test 

I. Context 

a. We have calculated 16 signature values for 1103 catchments 

b. We have determined the membership of each catchment to each of the 18 

possible climate clusters 

c. We want to know if there is a statistical difference between the signatures 

values that are associated with each cluster 

II. Problem 

a. We need a non-parametric method because we are unsure of the 

distributions that make up the signature values per climate cluster (i.e. we 

don’t know if they are normal, so the t-test shouldn’t be used) 

b. The Wilcoxon rank test is a suitable test but can only be used in cases 

where the samples are unweighted (i.e. all samples belong for 100% to 

their respective class). The test thus needs to be adapted 

III. Wilcoxon procedure 
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a. With the Wilcoxon test, we are testing the null hypothesis 𝜇1 = 𝜇2 against 

a suitable alternative (Walpole, 1968), with 𝜇1 being the mean of all 

observations 𝑥𝑖=1:𝑚 and 𝜇2 being the mean of all observations 𝑦𝑗=1:𝑛 

b. The unmodified Wilcoxon test consists of pair-wise comparison of all 

observations in 𝑥𝑖 and 𝑦𝑗. If 𝑥𝑖 >  𝑦𝑗 , a new variable  𝑈𝑥 is increased by 

1, if 𝑥𝑖 <  𝑦𝑗, 𝑈𝑦 is increased by 1. After all pairs have been compared the 

p-value for obtaining a given 𝑈 = min (𝑈𝑥, 𝑈𝑦) can be obtained from 

tables or otherwise, which gives a measure of the likelihood of obtaining a 

given 𝑈 value under the null hypothesis. If the p-value is below a certain 

critical threshold, the null hypothesis can be rejected. 

IV. Solution 

a. Modify the Wilcoxon test to account for weighted observations and use 

bootstrapping to empirically determine the null distribution 

b. In this case  𝜇1 refers to the mean of signatures values belonging to 

climate cluster 1, consisting of 𝑥𝑖=1:𝑚 observations with accompanying 

weights 𝑤𝑥,𝑖=1:𝑚. Idem for 𝜇2. During pair-wise comparison, 𝑈𝑥 is 

increased by 𝑤𝑥,𝑖 ∗ 𝑤𝑦,𝑗, if 𝑥𝑖 >  𝑦𝑗. Otherwise, 𝑤𝑥,𝑖 ∗ 𝑤𝑦,𝑗 is added to 𝑈𝑦. 

𝑈 = min (𝑈𝑥, 𝑈𝑦) can now be tested against an empirical null distribution. 

c. To create the empirical null distribution, 𝑥𝑖 and 𝑦𝑗 are pooled together into 

a single sample, from which two new uniform random samples are drawn, 

with replacement, equal in size to 𝑥𝑖 and 𝑦𝑗. A U-value is then determined 

from pairwise comparison of both new samples. This process is repeated N 

times to form an empirical approximation of the null distribution. N is 

commonly set at 999 (Davison & Hinkley, 1997). 

d. Now the U-value of observations can be compared to the empirical 

distribution of U-values under the null hypothesis, using 𝑝 =
𝑟+1

𝑁+1
, where 

N is the number of samples and r is the number of samples that have a U-

value below the U-value calculated for the data (North, Curtis, & Sham, 

2002). 

V. Illustration of Wilcoxon test, adapted for fuzzy membership 

a. (a) Distribution of weighted  𝑥𝑖 and 𝑦𝑗 as observed in the data. The y-axis 

is meaningless and only used to visualise  𝑥𝑖 and 𝑦𝑗 better. The U-value 

for these samples is 204.4 

b. (b) Uniform random sampling with replacement of  𝑥𝑖 and 𝑦𝑗, from a pool 

made up of  𝑥𝑖 and 𝑦𝑗. Visually, the samples are similar to one another, 

and very different from the pattern seen in (a). The U-value is 697.7 

c. (c) The average U-value after N-samples levels out at U ≈ 840 and N = 

999 seems sufficient.  

d. (d) Visually comparing the U-value calculated from data with the 

empirical U-value distribution shows that the null hypothesis can quite 
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probably be rejected. The test statistic 𝑝 =
𝑟+1

𝑁+1
=

0+1

999+1
= 0.001 confirms 

this. 

 

Figure S11. Example of empirical statistical test. (a) Distribution of observed values of 

the average_flow signature for representative climate 16 (xi, very wet climate, low 

seasonality, no frost) and climate 1 (yj, very dry climate, low seasonality, no frost). Data 

points correspond to all 1103 catchments with their transparency dependent on the 

weight with which they belong to each cluster. The low U-value indicates a large 

difference in ranks between both samples, which can also be seen from the 

concentration of high weight values for both climates. (b) Uniform random re-sampling 

of xi and yj, from a sample containing both. The re-sampled distributions are more similar 

(spread of height weights) and this leads to a higher U-value. (c) The average U-value of 

the re-sampled distribution after N samples. (d) The resulting distribution of re-sampled 

U-values (bars) versus the U-value of observations (red line). The observed U-value is 

very different from the re-sampled distribution, leading to a low empirical p-value and 

thus a high confidence that the H0 hypothesis μxi = μyj should be rejected. 

 

Text S2.2. Signature values 

This section contains plots of the average signature value in each climate cluster and 

Köppen-Geiger class. Signature values are calculated using daily flow data for each 

hydrological year available per catchment. This gives up to 30 annual values per 

catchment (depending on number of available hydrological years), from which the 

average annual signature value is calculated. Catchment membership to each climate 

cluster is used to create a weighted average signature value per climate cluster. 
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Figure S12. Weighted mean signature values per climate cluster, plotted at the climate 

cluster centroid location. Values are the weighted mean of average annual signature 

values per catchment. 

 

 

Figure S13. Distribution of the mean of annual signature values per GRDC catchment 

within each Köppen-Geiger climate. Climate classes without flow values are not shown. 

 

Text S2.3. Statistical difference between climate groups/classes per streamflow 

signature 

This section shows the results of significance testing per signature, with catchments 

grouped by representative climate (significance tested with empirical Wilcoxon test, 

Figure S14) and Köppen-Geiger class (significance tested with regular Wilcoxon test, 

Figure S15). 
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Figure S14. Empirical p-values of differences between annual mean signatures values 

per climate cluster. 
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Figure S15. p-values of differences between annual mean signatures values per Koppen-

Geiger climate class 

 

Text S3. Geographical spread of GRDC catchments per main climate cluster 

This section shows the geographical spread of GRDC catchments in the context of their 

main representative climate, showing that nearly all representative climate contain flow 

records from at least two continents. 

 

 

Figure S16. GRDC catchments (white dots) per main climate cluster (cluster for which 

each catchment has the highest membership degree). Catchment-averaged climate is 

used to determine membership degrees where catchment boundary data is available 
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(718 catchments), the climate at the outlet location is used in the remaining cases (385 

catchments). 



Catchment ID Excluded? Reason 

c3624250 Yes Average flow during first 10 years is 400 m3/s, then a 2-year hiatus in 
measurements, average flow during last 10 years is 2000 m3/s 

c3625000 No, corrected Amazon river. Days 277:458 are 0.6mm/d lower than rest of record 

c3625310 Yes Amazon river, flows during middle 13 years are factor 5-10 lower than 
other years 

c3627811 Yes Bolivian river. Very short time series with unexplained drops to zero 

c3628300 Yes Amazon river. Unexplained increase in flow variability for middle 13 years 

c3628400 Yes Amazon river. Flow regime changes drastically due to hydropower dam 
construction 

c3628401 Yes Amazon river. Flow regime changes drastically due to hydropower dam 
construction 

c3629390 No, corrected Amazon river. Days 1523:2253 are 1.2mm/d lower than rest of record 

c3629800 Yes Amazon river. Unexplained flow regime changes in middle of data 

c3649413 No, corrected Brazilian river. Sudden drop in flow values, coinciding with start of new 
month. Possible procedure error. Removed 7000:end 

c3649416 No, corrected Brazilian river. Sudden drop in flow values, coinciding with start of new 
month. Possible procedure error. Removed days 7245:end 

c3649440 No, corrected Amazon river. Sharp decrease in data quality towards end of series. 
Removed days 6491:end 

c3649455 No, corrected Amazon river. Sharp decrease in data quality towards end of series. Also 
mentions dam construction around that period. Removed days 6972:end 

c3649461 Yes No catchment area 

c3649465 Yes No catchment area 

c3649610 No, corrected Amazon river. Sharp decrease in data quality towards end of series. 
Removed days 7245:end 

c3649614 No, corrected Amazon river. Sharp decrease in data quality towards end of series. 
Removed days 7153:end 

c3649630 No, corrected Amazon river. Wonky data quality at beginning and end of series. Removed 
1:1128 and days 6635:end 

c3649855 No, corrected Amazon river. Sharp decrease in data quality towards beginning of series. 
Removed suspect data 

c3649960 No, corrected Amazon river. Sharp decrease in data quality towards end of series. 
Removed days 6910:end 

c4102450 No Alaska river. Shows 3 peaks that look like outliers in Oct-1986, Aug-2006 
and Sep-2012. News reports confirm floods at those dates 

c4115210 No Washington river. Shows peak that looks like outlier in Feb-1996. News 
report confirms a flood. 

c4115320 Yes Montana river. Subject to heavy dam construction. Streamflow record 
changes drastically for this site around 1970 

c4115321 Yes Idaho river. Subject to heavy dam construction (Libby dam, 1972). 
Streamflow characteristics change during flow series 

c4115322 Yes Idaho river. Subject to heavy dam construction (Libby dam, 1972). 
Streamflow characteristics change during flow series 

c4118100 No Nevada river. Shows a peak that looks like an outlier. USGS fact sheet 
confirms a flood in Jan-1997 

c4118105 No Nevada river. Shows a peak that looks like an outlier. USGS fact sheet 
confirms a flood in Jan-1997 



c4119265 No Idaho river. Shows outlier-like peak. Various sources confirm a flood event 
in Jun-2008 

c4123255 No Ohio river. Shows outlier-like peak. Various sources confirm extreme flood 
in Mar-1997 

c4126850 No Texas river. Peaks are sudden and high. Typical ephemeral stream 

c4146230 No California river. Outlier-like peaks. Typical ephemeral stream 

c4146380 No California river. End of data looks higher than rest of series but no reason 
to assume errors 

c4148070 No Virginia river, near NC. Outlier-like peak. No sources confirm flood but 
proximity to NC and matching flood dates imply hurricane-related flood 
here 

c4148110 No North Carolina river. Outlier-like peak. Various sources confirm Sep-1999 
flood due to hurricane 

c4148125 No North Carolina river. Outlier-like peak. Various sources confirm Sep-1999 
flood due to hurricane 

c4148850 No Florida river. Low flow variability is high (quick changes), peaks look slower 
than normal rising limbs. No reason to assume errors, historical data from 
1933-2017 looks the same 

c4149405 No Alabama river. Outlier-like peak. News report confirms flood in May-2003 

c4149411 No Mississippi river. Data looks spiky but no reason to assume errors 

c4149420 No Florida river. Outlier-like peak. Weather source confirms flood in Oct-1998 

c4149510 No Florida river. Outlier-like peak. Weather source confirms flood in Oct-1998 

c4150310 No Texas river. Outlier-like peak. News report confirms extreme flood in Oct-
1998 

c4207750 No British Columbia river. Outlier like peak. News report confirms extreme 
flood in Oct-2003 

c4213080 No, corrected Alberta river. Outlier-like peak near end of data. No confirmation found of 
extreme rain or flow, removed outlier 

c5202057 No New South Wales river. Shows outlier-like peaks. No confirmation of 
extreme flow but confirmation of extreme rain in the approximate area 

c5202065 No New South Wales river. Shows outlier-like peaks. No confirmation of 
extreme flow but confirmation of extreme rain in the approximate area 

c6123501 No, corrected France river. Flows drop to (nearly) zero towards end of data, coinciding 
with start of new year. Possible procedure error. Removed 9133:end 

c6125360 Yes Catchment area too small, results in unrealistic flows 

c6128702 Yes Catchment area too small, results in unrealistic flows 

c6139201 No, corrected France river. Flows drop to (nearly) zero towards end of data, coinciding 
with start of new year. Possible procedure error. Removed days 9133:end 

c6139260 No, corrected France river. Flows drop to (nearly) zero towards end of data, coinciding 
with start of new year. Possible procedure error. Removed days 9133:end 

c6139280 No, corrected France river. Flows drop to (nearly) zero towards end of data, coinciding 
with start of new year. Possible procedure error. Removed days 9133:end 

c6139281 No, corrected France river. Flows drop to (nearly) zero towards end of data, coinciding 
with start of new year. Possible procedure error. Removed days 9133:end 

c6139501 No, corrected France river. Flows drop to (nearly) zero towards end of data, coinciding 
with start of new year. Possible procedure error. Removed days 9133:end 

c6139502 No, corrected France river. Flows drop to (nearly) zero towards end of data, coinciding 
with start of new year. Possible procedure error. Removed days 9133:end 



c6139850 No, corrected France river. Flows drop to (nearly) zero towards end of data, coinciding 
with start of new year. Possible procedure error. Removed days 9133:end 

c6139960 No, corrected France river. Flows drop to (nearly) zero towards end of data, coinciding 
with start of new year. Possible procedure error. Removed days 9133:end 

c6150300 Yes No catchment area 

 


