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ABSTRACT

The ability to continually monitor several meteorological parameters is needed to estimate snow surface energy balance
components in mountainous terrain. In remote mountainous locations, limited accessibility and extreme weather
conditions limit the use of delicate meteorological instrumentation. Robust instrumentation and radio telemetry are
often needed to measure snow surface energy exchanges. This study examined the practicality and effectiveness of
robust instrumentation in estimating radiative and turbulent exchanges in the forested Bear River Mountains of
northern Utah. Measurement of reflected shortwave radiation was problematic due to possible selective absorption
in the infra-red range. This resulted in overestimates of refiected shortwave radiation and decreased estimates of
now surface albedo. During high snowfall, the pyranometer and net radiometer were occasionally covered with
snow, resulting in inaccurate radiation measurements. Snow typically melted from instrument surfaces in less than
one day under full sun. A relative humidity measurement accuracy of +4% may have resulted in a possible error of
20% in the calculation of vapour pressure. Snow depth measurement with an acoustical sensor was affected by
new or blowing snow, which resulted in inaccurate snow depth measurement 16-2% of the time. The longest period
without a valid snow depth measurement was 19-5 hours. A new snow temperature thermocouple ladder was designed
and constructed and provided accurate within-pack temperature measurements throughout the pre-melt and melt
season.

KEY WORDS Snow surface energy balance Mountainous terrain Meteorological measurements Temperature
measurements Utah, USA

INTRODUCTION

The estimation of snow energy balance components in mountainous regions requires the ability to con-
tinually monitor several meteorological parameters at remote locations. Limited accessibility inhibits the
continuous maintenance of meteorological instrumentation. Subzero temperatures, high precipitation
and strong winds prevent the unattended use of delicate instrumentation. Under extreme conditions, there-
fore, robust instrumentation and telemetry are needed to measure snow surface energy budget parameters.
Increased durability may result in decreased instrumentation sensitivity, directly affecting the quality of
collected data. The quality of snow surface energy information contributes significantly to the accuracy
of estimating snow ablation rates in remote locations. Few studies have critically examined the effective-
ness of robust meteorological instrumentation used to collect snow surface information. Thus the objective
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of this work was to examine the effectiveness of robust instrumentation and radiofrequency (RF) telemetry in
providing information to estimate snow surface energy exchanges for use with the energy budget equation.
Mention of manufacturer's brand names is to assist the reader and not to imply an endorsement of any kind.

SITE DESCRIPTION AND DATA RECORDING

The study was performed during the spring of 1991 in the Beaver Mountains of northern Utah. The study
site is located near the Beaver Mountain ski resort (45°00' N, 111°30’ W) 32:9km north-east of Logan,
Utah. Two test plots were constructed in a 30 x 40m opening in mixed spruce—fir forest at an elevation
of 2600 m. with a north-east aspect (Figure 1). The plots were located adjacent to one another 100 m down-
slope on the lee side of an open ridge on a 15° slope. One plot was lined with 1-0 mm plastic and channelled
to a 10:1 V-notch weir (Mosley, 1979) to measure snowmelt at the soil surface. The second plot was unlined
and trenched at the downslope end. Water emerging from the excavated face was also channelled into a
10:1 V-notch weir.

All measurements, except snow depth and temperature, were taken every 30 seconds and averaged over
30 minute periods. A 30 second measurement interval was considered adequate to provide meaningful input
data. Measurement average intervals must be long enough to provide a realistic mean, but short enough not
to reflect the influence of diurnal cycles. For this reason a 30 minute interval was considered adequate to
provide representative values of the measured parameters.

Three tripods supported a cross-member used to mount instrumentation and data recording equipment
above the plots. Instrument deployment is illustrated in Figure 2. A white fibregiass environmental
enclosure contained a data logger (Campbell Scientific, Model 21X), radio (Motorola, Model P50)
and RF modem (Campbell Scientific, Model RF95). A separate tripod located on the ridge supported a
Yagi RF antenna. Data were transmitted from the data logger to Logan every 24 hours via the RF

" Figure 1. Photograph of the experimental site and surrounding terrain
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Figure 2. Graphical illustration of instrument deployment at the Beaver Mountain study site

communication link. The system was powered by a deep cycle marine battery continually trickle-charged by
a 10 W solar panel. An analogue multiplexer (Campbell Scientific, Model AM416) was used to allow the
measurement of 20 thermocouples (TCs) for snowpack temperature profiles.

The site was instrumented to measure the following: net radiation, incoming and reflected shortwave
radiation. wind speed gradients, precipitation, relative humidity gradients, air temperature gradients, snow-
pack profile temperatures and snow depth. Snow ablation rates were determined by using these measured
parameters to calculate the individual components of the energy budget equation. Instrumentation type.
accuracy and measurement height are summarized in Table I. Resolution was a function of the data logger
and sensor accuracy. No problems were encountered with the data recording and RF telemetry equipment
after the initial setup period. The solar panel and deep cycle marine battery successfully powered the system
during the whole study period.

Radiation measurement

The radiation balance at a snow surface is described by the following:

0'=(1-a)K+L—-L (1)
where 0~ is net radiation. « is the snow surface albedo, K; and L; are incoming shortwave and longwave
radiation and L, is the thermal radiation emitted by a snow surface.

Incoming radiation is composed of direct and diffuse shortwave radiation with a wavelength between 0-3
and 2-8 um and emitted longwave radiation from the earth/atmosphere with a wavelength between 6-8 and
100 um. The range between 2-8 and 6-8 um includes both shortwave and longwave radiation, but is less than
5% of total incoming radiation (Geiger, 1966).
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Table I. Summary of meteorological instrumentation on study site

Instrument Model Range Resolution Accuracy Height  Linearity
Radiation (K, K,, @7) ,
Pyranometer (K;, K,) Li-Cor LI2005 400-1100nm  £022Wm™ +3%'  30m —_
Net radiometer REBS Q-5 400-800 nm +0-0129Wm™> £5%' 3-0m —
Air Temperature (7T5,) : '
Thermistor Fenwall UUTS51J1 -35 to +50°C - +0-3°C' 05 mz <0-5°C
20m
Relative humidity (Ry) o
Inert cellulose crystal Hygrometrix XN 217 0-100% — +40%' 05 mt £ 2:0%
20m
Wind speed and directiorg(u:, 0-360°C)
Three-cup anemometer RM Young 0-50ms™" - — 05m -
03001-5 20m!
Wind vane RM Young 0-350°C _ —  0S5m —_
03001-5 : -2:0m’

Snow temperature (7)
Type E TC (0-25 mm)1l - - —40 to +40° +0-005°C +0-05°C 0-2000mm  —
39uv >C™h (100 mm apart)
Snow depth (Dgpow)
Ultrasonic transducer CSC UDG-01 0-10m 5mm +4mm 30m —

Tnformation determined from manufacturer’s specifications.
! Instrument height adjusted periodically during the study.
§ Distance constant, 2-3m; threshold, 0-Sms™".

Reference temperature, thermistor UUTS1J1.

Incoming (K;) and reflected (K,) shortwave radiation was measured by silicone photodiode pyranometers
(LI-COR, Model LI1200S) developed from the work of Kerr et al. (1967). The photodiode sensor is insen-
sitive to the near infra-red range with a spectral response of 400-1100 nm (Flowers, 1978). The manufac-
turer compensates for the near infra-red region insensitivity by adjusting the pyranometer calibration
factor. Snow surface albedo varies with the wavelength of solar radiation; short wavelengths result in
high reflectivity, reflectivity values decreasing to very low values in the near infra-red range (Male and
Granger, 1981; Oke, 1987). Owing to the selective absorption in the near infra-red, the LI-COR
pyranometer could possibly overestimate the reflected radiation. Albedos calculated in this study are
substantially lower than those postulated by Sellers (1965), or the values reported by Choudhury (1981),
Choudhury and Chang (1981a, 1981b), Choudhury et al. (1981) and Warren (1982). This has the effect
of significantly increasing the net solar radiation, even after new snow has fallen. In short, unattended
measurement of the albedo was problematic because of shadowing by the instrument. The use of a higher
quality hemispherical sensor is recommended for future studies of this type.

Net radiation was measured with a high output 62 junction thermopile net radiometer (Radiation Energy
Balance Systems, Model Q-5). The sensor consisted of a black and white sensing surface protected by a
0-25mm polyethylene inner and an outer dome encased in a white enamelled body. The net radiometer
mounting arm contained a desiccant which prevented condensation from forming inside the dome.

Precipitation occasionally covered the pyranometer resulting in inaccurate measurements of K;. Snow
typically melted from the small black coloured pyranometer in less than one day under full sun. Measure-
ment of net radiation was minimally affected by snow; the smooth polyethylene dome and narrow sensor
body minimized snow accumulation on the sensor. Figure 3 shows an example of the effects of snow on
radiation measurements on 10 May 1991. :

'S ( ' ‘ .

Air temperature and relative humidity

Air temperature and relative humidity were measured at two heights (0-5 and 2 m) using a single sensor at
etich. height (Hygrometrix, Model XN217). A thermistor, incorporated in the sensog:-was used to measure
ait ‘temperature (T,). The sensors were shielded from direct and reflected radiation'by a passive, white
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Figure 3. Effect of snow accumulation on measurement of diurnal radiation balance on 10 May 1991

thermoplastic, six-plate gill radiation shield. Over snow surfaces, large errors are possible due to radiant
heating of passive radiation shields when wind speeds are less than 3-4ms”! (Tanner, 1990).

An error in the measurement of T, affects sensible and latent heat flux calculations. In northern Utah,
periods of high turbulent exchange are accompanied by high winds and overcast skies, occurring mainly
during frontal passages. High winds and low values of direct radiation should minimize air temperature
measurement errors, but an expectation of errors less than 1-0°C is unrealistic when passive radiation
shields are used to measure air temperatures.

Bulk aerodynamic methods require only air temperature gradient measurements, not absolute values.
The effects of solar heating due to the passive radiation shields are common to both air temperature mea-
surements and cancel each other. A more accurate and less expensive air temperature measurement could
have been achieved by using 30-gauge (0-25 mm) chromel-constantan (Type E) TC wire configured for a
temperature gradient measurement during this study. The effects of solar heating are common to both junc-
tions and cancel each other. Wind speeds of 0-2-0-3ms~! would be adequate to prevent any significant
radiant heating (Tanner, 1990).

Accurate measurement of relative humidity is required to calculate latent heat fluxes at the snow surface.
In the mountainous terrain of northern Utah, winter temperatures can be lower than —40°C; any sensor
used to provide a continuous measurement of relative humidity must be capable of operating under
extreme conditions. Several methods exist to measure the water vapour content of air, such as thermo-
dynamic, hygromechanical. condensation, pressure or optical methods (Platt and Griffiths, 1972). In
remote alpine studies hygromechanical sensors are the most practical method because of subzero con-
ditions. limited power and minimal sensor maintenance. Continuous relative humidity values were
recorded throughout the study period with hygromechanical sensors.

Each sensor consisted of a silicone. piezoresistive, thermally-matched strain gauge. The sensing element
was composed of a combination organic and inorganic cellulose crystal. The crystal senses moisture, which
“results in hygromechanical stress being induced on a pair of silicone strain gauges bonded in a half-bridge
configuration (Fenner, 1973). Humidity was measured continually during the winter to calculate vapour
pressure gradients above the snow surface.

Saturated vapour pressure was computed in the data logger by the following equation (Lowe, 1977):

E =ay+Tlay+ T(a+ T{ay+ Tlas+ T(as+ a TN} @)

where ap = 6-109177956, a, = 5.03469897 x 10~', a, = 1-886013408 x 1072, a3 = 4:176223716 x 1074,
a, = 5824720208 x 107, a5 = 4838803174 x 1078, a, = 1:838826904 x 10°'° and T is the air tempera-
ture (°C). Vapour pressure was determined using this value and the measured relative humidity. This
method provided a reliable estimation of vapour pressure. A concern with this approach is the sensitivity

of vapour pressure calculations to errors in humidity measurements.
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7 Figure 4. Effects of relative humidity measurement errors on vapour pressure calculations from —25 to 25°C at relative humidity values
of (A) 20 and 40% and (B) 60 and 80%

Humidity sensors were accurate to 4% absolute over the 0-100% range. A two point salt solution
calibration was conducted before installing the sensors to verify the manufacturer’s calibration and speci-
fications. Results from the calibration indicated that sensor accuracy was within the +4% specification.
Figure 4A shows the possible errors for relative humidity values of 20 and 40% and Figure 4B those for
60 and 80%. A 20% error is possible in the calculated value of vapour pressure at relative humidity values
less than 20%, but as relative humidity approaches 100%, the error is reduced to less than 5%. The cellu-
lose sensing element used had a response time of three minutes for a 63% change in humidity. This
slow response time limits the ability to detect the rapid upward or downward transport of vapour fluxes,
possibly resulting in underestimation of latent heat fluxes.

Early in the study, blowing and drifting snow filled the radiation shield and sensor cavity resulting in
inaccurate readings until cleaned. White nylon stockings were stretched over the radiation shields and
prevented the reoccurrence of this problem for the remainder of the study. During active melt, the
stockings were removed to prevent any measurement error due to radiant heating or reduced passive
aspiration. b

‘g

&

Wind speed and direction

Wind speed and direction were measured at 0-5 and 2m heights above the snow surface (RM Young
Wind Sentry, Model 03001-5). Sensors were mounted on a vertically adjusted cross-arm. Cross-arm
heights were adjusted periodically during snow accumulation and melt periods to maintain the 0-5 and
2 m measurement height above the snow surface. Wind speed was measured by an anemometer consisting
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Figure 5. Comparison of daily average wind speeds measured at 0-5and 2-0m above the snow surface at Beaver Mountain from | April
to 28 May 1991

of three 120 mm plastic cups, which produce an AC sine wave voltage signal. The frequency produced is
directly proportional to wind speed (0-75ms'l Hz™!'). The AC signal is induced in a stationary coil by a
two-pole magnet mounted in the cup wheel assembly. Wind direction was measured using a wind vane
assembly with a potentiometer to indicate position. A resistance value was measured by the data logger
to indicate wind direction.

Beaver Mountain wind speeds during the months of April and May (Figure 5) indicate that speeds
measured at 0-5m were periodically greater than the 2-0 m values. Visual observation confirmed this occur-
rence on several occasions during the study. The sensors and data logger were checked to verify correct
operation. Average daily wind speeds were only 0-6ms™! at the forested Beaver Mountain site. With
low wind speeds, the anemometer accuracy is questionable, possibly contributing to the observed decrease
with height. Wind direction data commonly indicated different and highly variable air flow patterns
between the 0-5 and 2-0 m height. These swirling wind patterns within the forest opening may have contri-
buted to decreased wind speed with height. Considering the low wind speeds in forested terrain, a more
sensitive anemometer could have been used to provide increased accuracy in wind gradient measurements.

Snow temperature

A new 20 junction TC ladder was designed and constructed to provide continuous monitoring of snow-
pack temperatures.. Chromel-constatan (Type E) TCs were supported by a mono-filament Jadder structure
on 100 mm spacings in the snowpack. The TCs were connected to an analogue multiplexer (Campbeli
Scientific. Model AM416) stored in a picnic cooler buried in the snowpack. The low thermal conductivity
of the snowpack minimized diurnal temperature fluctuations and created an isothermal environment in the
cooler. which minimized temperature gradients between the thermistor and TC reference junctions. Each
hour. the data logger measured each TC junction 10 times and calculated an average temperature for
each TC junction. Multiple measurements were intended to minimize the effect of signal noise on snow
temperature averages. :

Chromel—constatan (Type E) TC wire was used instead of copper—constatan (Type T) because chromel
has a thermal conductivity approximately 20 times lower than copper (Tanner and Gaza, 1990). Thirty-
gauge (0-25mm) wire was used to minimize the mass exposed to radient heating and subsequent thermal
conduction to each TC junction. The TC wire was routed from the ground surface, up the ladder sides
and then horizontally across the mono-filament Jadder rungs to further minimize heat transfer from the
surface to the TC junctions.

A thermistor. taped to the multiplexer, provided a reference temperature for TC measurements. A single
point ice-bath calibration was conducted to determine the thermistor’s offset of 0-126°C. The reference
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" Figure 6. Five daily average snow temperatures (distances from soil surface) from 3 February to 30 March 1991 at Beaver Mountain

temperature offset was corrected in the computer, but could have been corrected using a —0-126 offset value
in the data logger.

During active melt, maximum cavitation of 10 mm in diameter and 20 mm in depth was observed around
the mono-filament support structure. Daily average snow temperatures at 10, 20. 40, 60 and 80cm in the
snowpack are shown in Figure 6 for February and March. Snow temperature data indicated that the upper
snowpack became isothermal (T, = 0°C) around 30 April. Examination of hourly snow temperature
data indicates that the entire snowpack became isothermal on 5 May.

Snow depth and precipitation

Snow depth measurements were made with an ultrsonic sensor mounted 3m above the snow surface
(Campbell Scientific Canada, Model UDG-01). Readings were taken every 30 seconds and averaged
hourly during the early part of the study, and then averaged every 30 minutes during the active melt
season. A detailed description of the design and operation of the sensor is provided by Goodison et al.
(1984; 1988) and Tanner and Gaza (1990). In general, the distance to the snow surface is measured by
an acoustic signal produced by an ultrasonic transducer. The distance from the sensor to the snow surface
is determined by recording the time required for an acoustic signal to be reflected by the snowpack to the
sensor. This distance was used to calculate the snow depth in the data logger.

Several factors affect ultrasonic snow depth measurements and are discussed in detail by Goodison et al.
(1988). During this study, measurement accuracy was affected by the snow surface density, periods of heavy
snowfall, or blowing snow. In northern Utah, new snow density averages are between 5 and 10% of the
density of water. After heavy snowfall, the acoustic signal can penetrate the low density surface before
reflecting back to the sensor, resulting in inaccurate measurements. Snow depth measurement accuracy
improves as the snow surface consolidates. Observation during the study reflected discrepancies of
+30mm in the early season, improving to +5mm during the active melt period.

Heavy snowfall or blowing and drifting snow can result in scattering of the transmitted acoustic signal
and subsequent failure to receive a reflected signal. Frequent measurements (30 second intervals) were taken
to minimize the effects of reflected signals on 30 minute average calculations. During the study 4485
averages were recorded of which 725 (16:2%) were invalid according to post-measurement data analysis.
At least one valid reading was obtained for each 24 hour period. The longest time without a valid reading
was 19-5 hours. ‘

Acoustic snow depth sensors must be mounted perpendicular to the surface being measured to prevent
signal deflection away from the sensor. For this reason, the sensor was mounted on a 1 m mast extended
from the cross-member and angled to be parallel with the sloped snow surface.

Precipitation was measured with an unshielded, propane heated, tipping bucket type precipitation
gauge. The propane heating element was difficult to keep running at the 2600 m elevation, resulting in a
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discontinuous precipitation record, but a continuous record of precipitation was obtained during the period
of active melt.

Heated precipitation gauge measurement accuracy is a function of convective heat turbulence (Bergman,
1982), wind speed, particle buoyancy and gauge location (Goodison er al., 1981). Convective heat
turbulence and wind produce most of the error in precipitation measurement. Larson and Peck (1974)
compared shielded and unshielded precipitation gauges. They determined that catch error increased non-
linearly with wind speeds and that shielded gauges measured precipitation amounts more accurately
than unshielded gauges. Bergman (1982) reported that convective turbulence from heated precipitation
gauges prevented some snow from entering the orifice during cold conditions with low density snowfall,

. but decreased with increased snowfall intensities. During this study, the precipitation gauge was sheltered
from the prevailing winds by conifers and was located in a forest opening. Wind speeds were less than
2ms~!, minimizing possible errors due to the lack of a wind shield.

Precipitation temperature, T,, was determined by taking an average value of three exposed TC junctions
during precipitation events. This value was used to determine the contributions of Qp to the snowpack
energy budget.

'SUMMARY

Estimation of snow energy balance components in remote mountainous regions requires the ability to
continually monitor several meteorological parameters. This paper reports the measurement of net
radiation, incoming and reflected shortwave radiation, air temperature gradients, snow temperature,
relative humidity, wind gradients and direction, snow depth and precipitation. Each measured parameter
was examined for performance in the extreme conditions of a mountainous site in northern Utah during
the 1991 melt season.

Unattended remote measurement of solar radiation. albedo, relative humidity and snow depth were most
probiematic during this study. Reflected solar radiation values were overestimated, possibly due to selective
absorption in the near infra-red. As a result, the calculated albedo values were lower than those reported
elsewhere. Periodically, snow accumulation affected solar radiation and net radiation measurement during
the study. Continuous measurement of relative humidity was possible during the whole study using a
hygromechanical type sensor. An accuracy of +4% resulted in a possible error of 20% in vapour pressure
calculations and the slow response time limited the ability to detect rapid vertical vapour transport. Overall.
reliable relative humidity data were obtained throughout the study period. Snow depth measurements were
affected by snow surface density and heavy snowfall or blowing snow. These problems resulted in invalid
snow depth measurements 16:2% of the time. The longest period without a valid reading was 19-5 hours.
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