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Monitoring Land-Surface Snow
Conditions from SSM/I Data Using an
Artificial Neural Network Classifier

Changyi Sun, Christopher M. U. Neale, Jeffrey J. McDonnell, and Heng-Da Cheng, Senior Member, IEEE

Abstract—Previously developed Special Sensor Microwave/ Im-
ager (SSM/I) snow classification algorithms have limitations and
do not work properly for terrain where forests overlie snow cover.
In this study, we applied unsupervised cluster analysis to separate
SSM/I brightness temperature (75) observations into groups.
Six desired snow conditions were identified from the clusters;
both sparse- and medium-vegetated region scenes were assessed.
Typical SSM/I T signatures for each snow condition were
determined by calculating the mean T’z value of observations for
each channel in the corresponding cluster. A single-hidden-layer
artificial neural network (ANN) classifier was designed to learn
the SSM/I T signatures. An error backpropagation training
algorithm was applied to train the ANN. After training, a winner-
takes-all method was used to determine the snow condition.
Results showed that the ANN classifier was able to outline not
only the snow extent but also the geographical distribution of
snow conditions. This study confirms the potential of using cluster
means in ANN supervised learning, and suggests a nonlinear
retrieval method for inferring land-surface snow conditions from
SSM/I data over varied terrain.

1. INTRODUCTION

ONITORING land-surface snow conditions throughout

the snow season is essential for understanding re-
gional hydrologic response and global climatic feedbacks. The
Special Sensor Microwave/Imager (SSM/I) radiometer, on-
board the Defense Meteorological Satellite Program (DMSP)
satellites, is a useful tool for classifying snow because it
is sensitive to the changes in snow physical and dielectric
properties. The SSM/I is a seven-channel, four-frequency,
linearly polarized, passive microwave radiometric system; it
measures both vertically (V) and horizontally (H) polarized
brightness temperatures (T’gs) at 19.35, 37.0, and 85.5 GHz
and only vertical polarization at 22.235 GHz [1]. Each day,
14.1 full orbit resolutions are acquired, including ascending
(south to north) and descending (north to south) overpasses.

Many SSM/I snow classification algorithms have been de-
veloped [2]-[4]. In general, these methods have employed
statistical linear relationship of polarization information, in
terms of thresholds of certain Ty combinations, between
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different land surface features to form the classification rules.
However, these rules are restricted to land surfaces with
uniform snow conditions. Where evergreen forests overlie
snowpack, the developed algorithms may misidentify those
forested snow covers with snow-free areas. As indicated in
[5], vegetation, especially coniferous trees, will mask the
microwave emission from the snow below, thereby resulting
in a higher Tp that makes the classification rules uncer-
tain.

In complex terrain situations, statistical regression is often
unsuitable because there are too many random variables in-
volved in the characterization of microwave response, making
the problem extremely nonlinear. According to [6], some of the
most complex remote sensing problems can be handled with
unsupervised cluster analysis, which separates the observed
data vectors into groups. Cluster analysis has the advantage
of making no a priori assumptions about the possible classes,
providing objective indications of the information embedded
in multidimensional data sets. The study of [7] shows that
typical Tp signatures for a variety of snow classes can be
derived from the average (cluster mean) of all Tp data at a
given frequency in each class defined by clustering process.

Recently, the use of artificial neural network (ANN) with
supervised learning to retrieve snow properties from passive
microwave data has been addressed [8]-[10]. Studies have
shown that ANN’s have the potential to learn Tz patterns,
where previously the complexity and nonlinearity in the vari-
ables made them difficult to define using empirical regression
approaches.

In neural computing, error backpropagation training [11] is
the most widely used learning method in the development of
an ANN classifier. This method requires that the input and the
desired output must be provided during training; consequently,
the selection of input/output data pairs is essential to the suc-
cess in ANN generalization. Following [12], an ANN trained
from only cluster means showed a reliable generalization
capability in pattern classification. ,

In this study, we propose a new framework where typical
SSM/I Ts signatures of desired snow conditions are inter-
preted from unsupervised cluster analysis, and then used as a
prelude to supervised learning in an ANN classifier. In this
way, the ANN learns only the central tendency of the clusters,
in terms of geophysical significance of the snow conditions,
instead of all random information from the data. We explore
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‘the above concept operationally for inferring land-surface
snow conditions from SSM/I data over varied terrain.

II. STUDY SITE AND DATA INTEGRATION

The study area is bounded by latitude of 40°N to 45°N
and longitude of 100°W to 115°W, including both plains and
mountainous regions of the western United States. This area
contains a variety of sparse- and medium-vegetated terrain.
Data of SSM/I T, normalized difference vegetation index
(NDVI), and ground-based snow measurements from October
1, 1989 to May 30, 1990 in the area were used.

The SSM/I Ty observations from the DMSP-F8 satellite
were obtained from the Naval Research Laboratory. Due to the
degradation of the 85.5 GHz channels on DMSP-F8 satellite
after March 1988, only T's data from the five lower frequency
channels, denoted as T19V, T19H, T22V, T37V, and T37H,
were employed.

The NDVI was calculated from the visible and near-infrared

digital values of the NOAA Advanced Very High Resolution

Radiometer (AVHRR). NDVI is useful for characterizing the
vegetation density over large regions [13]. These data have a
valid greenness value range from 110 to 160 [14]. A monthly
maximum scaled NDVI data set [15] was obtained for the
reference ground truth vegetation.

Ground-based measurements of daily snow water equivalent
(SWE), and maximum, minimum and average air temperature
over mountainous terrain were obtained from the Soil Con-
servation Service (SCS) SNOTEL (SNOwpack TELemetry)
system [16]. Daily snow depth (SD), maximum and minimum
air temperature, and air temperature at the measuring time in
the plains were derived from the NOAA cooperative weather
observing network [17]. These ground-based data were used
to estimate snow conditions at weather stations.

Land-surface snow condition of each SNOTEL or NOAA
weather station at the DMSP-F8 local crossing time (either
0600 or 1800) was classified as: 1) snow-free if SWE or SD
was equal to zero; 2) dry snow if SWE or SD increased from
the previous date and the concurrent air temperature was less
than or equal to 0 °C, 3) wet snow if SWE or SD was not equal
to zero and the concurrent air temperature was greater than
0 °C; or 4) refrozen snow if the concurrent air temperature
was below freezing and the snow condition of the previous
date was either wet or refrozen. Because of the lack of SWE
data, SD data at NOAA stations were converted to SWE by
assuming a snow density of 0.2 for dry, 0.3 for wet, and 0.4
for refrozen snow.

For the SNOTEL stations, air temperatures at 0600 and 1800
(the SSM/I overpass time) were defined as the daily minimum
and average air temperature, respectively. For NOAA weather
stations, air temperatures derived between 0400 and 0700 and
between 1600 and 1900 intervals were used for the 0600
and 1800 SSM/I overpass data. If air temperatures were not
recorded between these intervals, the air temperature at 0600
was equal to the minimum air temperature and that at 1800
was extrapolated as follows: the maximum air temperature
was assumed at 1400 and was linearly decreased to the
temperature at observing time if after 1400, or the maximum

“air temperature of the previous day was decreased to the

temperature at observing time if before 1400.

Since the latitude/longitude coordinates of the SSM/I foot-
prints change with each overpass, a neighborhood merging
method was employed to link the multisource data into a
single database. This was done by searching the AVHRR
pixels and ground weather stations within a 15-km radius
of the SSM/I latitude/longitude location (i.e., approximately
the size of a 37.0 GHz footprint). Average NDVI, average
SWE, and dominant snow condition were determined for the
corresponding footprint.

Only data of SSM/I footprints with snow-covered land
surface (average SWE >0 mm) were considered as valid
elements in the database. In addition, based on the land-
surface-type classification rules in [2], each SSM/I footprint
was checked for flooding condition (T22V-T19V >4 K)
and precipitating condition (T19V >268 K). Data of these
conditions, if existed, were discarded from the database.

III. CLUSTER ANALYSIS OF SSM/I Ty DATA

Two clustering methods, the average linkage and centroid
method [18], were used to explore the possible clusters in the
database with respect to five SSM/I Tg variables of lower
frequency channels. Clusters suggested by the cubic cluster-
ing criterion (CCC) [19] were examined from the smallest
number of clusters to higher ones until the desired snow
conditions [i.e., dry snow with sparse (DsSv) or medium
(DsMv) vegetation density, wet snow with sparse (WsSv) or
medium (WsMv) vegetation density, and refrozen snow with
sparse (RsSv) or medium (RsMv) vegetation density] were
all defined. In each number of clusters, the cluster means, in
terms of five mean T'g values (typical Tg signature) and mean
NDVI, were determined for each cluster. A hypothetical true
snow condition, if detected, was then assigned to the cluster
according to its cluster means in relation to the emission
behavior of snow cover and vegetation density. Ultimately,
only data from the six most distinguishable clusters for the
desired snow conditions were selected.

Table I shows the cluster means of six land-surface snow
conditions defined by the two clustering methods at differ-
ent suggested number of clusters. Generally, refrozen snow
and sparse-vegetated dry snow conditions were more easily
distinguished in a smaller number of clusters than wet snow
and medium-vegetated dry snow conditions. The mean NDVI
values of the selected clusters were all below 110 (Table I)
suggesting a nonvegetated area according to [14]. Such low
values could be due to the heterogeneous vegetation density
in the study area and the integration of NDVI from AVHRR
high spatial resolution (1 km) to SSM/I low resolution (30 km
at 37 GHz). Nevertheless, higher values were associated with
the medium-vegetated snow cover for dry, wet, and refrozen
conditions, suggesting the NDVI is usable for characterizing
microwave responses of different vegetated snow conditions.

Fig. 1 shows the typical SSM/I T signatures defined for
the six snow conditions, using average linkage and centroid
method. Both methods provided similar 75 patterns of snow
conditions. Mean Tg values of medium-vegetated snow were
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i e "TABLE I =
CLUSTER MEANS OF LAND-SURFACE SNOW CONDITIONS

Clustering Snow Cluster Means # of Clusters
Method Conditon T37V  T37H T22V  Ti9V TISH NDVI by CCC

~ Average DsSv 24597 234.64 25295 25521 24198 90 29
Linkage DsMv 252.03 24590 25853 260.57 252.76 105 35
WsSv 25977 25071 26144 26139 24739 103 43
WsMv 25923 253.74 263.12 26471 257.40 108 43
RsSv 208.68 200.04 237.61 24439 228.43 52 9
RsMv 231.97 22592 24825 25232 24327 93 43
Centroid DsSv 24527 23453 25243 25475 242.03 91 39
Method DsMv 250.85 24437 25761 259.73 251.48 102 49
WsSv 259.31 25040 26045 259.61 243.91 107 43
WsMv  260.07 25424 26412 265.62 257.87 109 43
RsSv 208.68 200.04 237.61 24439 22843 52 12
) RsMv 230.63 223.76 247.70 252.01 241.97 87 43
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7Fig. 1. Typical SSSM/ T signatures of six land-surface snow conditions
defined by clustering analysis.

higher than those of sparse-vegetated since the overlying
vegetation tends to increase the Tp [5], especially at higher
frequencies [20]). The refrozen snow conditions were most
distinguishable from the others at 37 GHz. This is because the
melting and freezing process produces larger snow crystals,
which scatter the emission at shorter wavelengths [21]. Mean

T values of wet snow were the highest for all conditions,
since the liquid water at the surface of snowpack can absorb
and re-emit the microwave radiation from the snow below
[22]. This emission behavior together with the effect of
overlying vegetation made microwave signatures of WsSv,
WsMv, and DsMv similar, causing the information of these
snow conditions to be not apparent when the number of
clusters was small (Table I).

In comparison, disagreement was found between ground-
based and clustering-based snow conditions (Table II). This
could be due to the noise in ground-based estimation. The
ground-based snow conditions were interpreted by the esti-
mation of concurrent air temperature of point measurements
within each SSM/I footprint. Error could be introduced due to
the temporal variability of air temperature, causing different
snow conditions to be related to SSM/I footprints of similar Tz
patterns. With respect to dry, wet, and refrozen snow, a t-test
for testing the null hypothesis that the means of two groups are
equal [18] was performed to compare the equality of variances
between ground-based data, clustering-based data, and inter-
section of the two (i.e., data classified consistently by ground-
based and clustering methods). Results of probability (p) val-
ues (Table III) showed that ground-based and average-linkage-
based snow conditions were significantly different at 0.05
level. However, significant agreement (p value >0.05) was
found between the intersection and clustering-based data sets.
Similar results were also found in data using centroid method.

Accordingly, the above interpretation and justification
provide the theoretical and statistical basis for the use of
clustering-based SSM/I Tp signatures in ANN supervised
training.

IV. ANN TRAINING, VALIDATION, AND TEST DATA

The training data set was created by the input/output pairs of
typical T signature and corresponding snow condition from
each of the six selected clusters. A validation data set, used to
evaluate the learning performance of ANN during training,
was also prepared. Based on the number of data elements
in each selected cluster, the validation data set was formed
by including either all data in the cluster if the number of
elements was 100 or less, or the upper and lower quartiles
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R TABLE II
COMPARISON BETWEEN GROUND-BASED AND CLUSTERING-BASED SNOW CONDITIONS

Clustering Clustering-Based Condition Ground-Based Condition and Data Elements
Method and Data Elements Dry Wet Refrozen
Average DsSv 237 (112) 12 113
Linkage DsMv 1608 (1005) 72 531

WsSv 93 37 (26) 30

WsMv 1123 592 (150) 381
RsSv 19 9 3 (O]
RsMv 213 156 5 (52)

Centroid DsMv 216 (111) 11 94
Method DsMv 1112 (710) 40 362
WsSv 24 9 (8) 7

WsMy 741 336 (121) 284
RsSv 19 9 3 )
RsMv 167 123 5 (39)

" Number in () represents the elements in the intersection of ground-based and clustering-based data sets.

TABLE III
PROBABILITY VALUES OF GROUP MEANS COMPARISONS BETWEEN GROUND-BASED CLASSIFICATION AND. INTERSECTION OF THE TWO METHODS

Variable Ground vs. Clustering Ground vs. Intersection Intersection vs. Clustering
Dry Wet Refrozen Dry __Wet Refrozen Dry  Wet Refrozen
T37V 0.000 0.000 0.000 0.002 0.000 0.000 0.701 0.001 0.559
T37H 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.646 0578
T22V 0.000 0.000 0.000 0.000 0.000 0.000 0.403 0.007 0.881
T19V 0.000 0.000 0.000 0.000 0.000 0.000 0464 0.108 0.926
T19H 0.000 0.000 0.000 0.000 0.001 0.000 0.005 0.000 0.668

'[23] of the data if the number of elements was large. The
purpose was to eliminate the possible outliers to ensure that
the ANN evaluation was based on data related to the central
tendency of the cluster.

The corresponding snow conditions in each training and
validation data set were coded as (0.8, —0.8, —0.8, —0.8,
—0.8, —0.8) for DsSv, (—0.8, 0.8, —0.8, —0.8, —0.8, —0.8)
for DsMv, (-0.8, ~0.8, 0.8, —0.8, —0.8, —0.8) for WsSv,
(-0.8, —0.8, —0.8, 0.8, —0.8, —0.8) for WsMy, (0.8, 0.8,
-0.8, —0.8, 0.8, —0.8) for RsSv, and (—0.8, —0.8, 0.8, —0.8,
—0.8, 0.8) for RsMv to represent the desired outputs in the
ANN learning.

Ideally, a test data set is used to measure the generalization
capability of a trained ANN in real use; therefore it should
be completely independent of the data used in training and
validation. Based on the information of NOAA daily weather
maps and the availability of SSM/I data, Tg observations from
DMSP-F11 satellite over the United States on Jan. 9, 1993
were selected as the test data set. The SSM/I data were pro-
vided by the EOS Distributed Active Archive Center (DAAC)
at the Marshall Space Flight Center, Global Hydrology and
Climate Center, Huntsville, AL.

V. ANN TOPOLOGY AND LEARNING APPROACH

A single-hidden-layer backpropagation ANN, as illustrated
in Fig. 2, was implemented. It consisted of one input layer of
five nodes representing the inputs T’z of values of lower SSM/I
channels, one hidden layer of preferred number of nodes,
and one output layer of six nodes for the land-surface snow
conditions. Given the number of nodes in each layer from input

to output as a sequence, the ANN topology was represented
as 5-N-6, where N is the number of hidden nodes. Four ANN
topologies, 5-5-6, 5-10-6, 5-20-6, and 5-30-6, were designed
for the study. A bias node, functioning similar to a constant
in a regression, was connected to the nodes in the hidden and
output layers. In addition, nodes of adjacent layers were fully
connected with different weights that were initialized at small
random values between —0.1 and 0.1.

The error backpropagation training algorithm [24], as de-
scribed in [11], was applied to train each ANN. This method
allows inputs to flow forward through the hidden layer to the
output layer and calculates the node outputs (Xi in Fig. 2) in
each layer. Inputs are scaled between —1 and 1 for the node
outputs in the input layer. However, each node in the hidden
layer and output layer decides its output by calculating the net,
which is the sum of all its incoming weights multiplied by the
node outputs of the previous layer. Then the net is transferred
by a hyperbolic tangent (tanh) nonlinear function to give an
output between —1 and 1. Mapping error (Ei in Fig. 2) of each
node in the output layer is measured by the least squared error
between node output (Xi in Fig. 2) and its desired output (Di in
Fig. 2). Errors are then propagated backward from the output
layer to the input layer to adjust the weigh/ts using the delta
learning rule [24] to minimize the error, so that the calculated
outputs in the output layer are more like the desired outputs.

VI. DEVELOPMENT OF THE ANN CLASSIFIER

Training was conducted by repeating a training cycle for
each of the four ANN topologies. The training cycle involved
forward feeding T's values in the training set from input layer
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~1<Xi<t ; net=X(X)(Wi) ; Finet)=2x(ne-exp(-nej

exp(nef)+exp(-nef) YALIDATION/
TESTING
2
Winner-Takes-All
Max(X1..X8)
TRAINING
Error Calculation [T[ ERROR
Ei = (Xi - Di)?
Error
; Packpropagaﬂon
Weight Adjustment |
5 \
Fig. 2. The design of an artificial neural network classifier.
’ TABLE IV
LEARNING PERFORMANCE OF THE ANN’s
Clustering Method ~ ANN Topology RMS Tolerance Training Cycles Error Rate (%)

Average Linkage 5-5-6 0215 1743 10.9
0.200 2908 39
0.185 7772 4.6
5-10-6 0.300 1159 34
0.200 5243 24
0.190 4329 6.6
5-20-6 0.230 1708 8.7
0.215 2597 5.6
0.200 2603 6.0
5-30-6 0.240 1998 10.1
0.230 2552 72
0.220 2098 16.9
Centroid Method 5-5-6 0.225 1984 55
0.200 1989 49
0.170 3271 5.5
5-10-6 0.250 1440 6.7
0.200 2268 5.5
0.190 2247 6.1
5-20-6 0.170 2920 9.8
0.165 2269 8.0
0.155 13224 14.7
5-30-6 0.195 2785 74
0.180 2191 6.1
0.160 4440 6.7

to output layer to calculate the mapping errors, backward
propagating the mapping errors from output layer to input
layer to adjust the weights in ANN, and calculating the root-
mean-squared (RMS) error after all the input/output pairs in
the training set were processed. Training stopped when the
RMS error converged to a specified RMS tolerance that was
set by trial and error in this study.

The validation data set was used to evaluate the learning
performance of each trained ANN. Tp values were forwarded
through the ANN and the node outputs in the output layer were

calculated. The winner-takes-all method [25] (i.e., the node
in the output layer with the highest node output designates
the condition) was applied to determine the snow condition
for each input of T values. Error rate, the percentage of
misclassified conditions in the entire validation set, was also
determined. An ANN with the minimum error rate was eligible
for the SSM/I ANN snow classifier.

Table IV summarizes the training and validation results of
the ANN’s. The best ANN performance was achieved by the
5-10-6 ANN trained with typical T signatures by average
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TABLE V
Two-Way TABLE OF THE DISTRIBUTION OF SNOW CONDITIONS BY THE ANN. CLASSIFIER
ON THE INTERSECTION SET OF BOTH AVERAGE-LINKAGE AND GROUND-BASED METHODS

Intersection Classification by the ANN Classifier
Data Set DsSv DsMyv WsSv WsMv RsSv RsMv Total
DsSv 72 26 11 3 0 0 112
DsMyv 72 572 123 237 0 1 1005
WsSv 0 0 26 0 0 0 26
WsMv 11 14 57 68 0 0 150
RsSv 0 0 0 0 7 0 7
RsMyv 4 8 0 0 6 34 52
Total 159 620 217 308 13 35 1352
linkage method and converged at RMS tolerance of 0.2. There
is no evidence to conclude that a smaller RMS tolerance may [ﬁ.’V T37H T22v T1V T19H
ensure a better ANN performance. The increase in error rate Y
as RMS tolerance decreased could be a sign of overtraining, v R
by which the ANN becomes too specific to the training data Flooding T22V-TI9V>40 U
rather than learning the general patterns for a successful L
generalization in validation [26]. In addition, it seems that N g
the number of hidden nodes was not a critical factor in ANN Y T19V > 266.0
training. The ANN classifier resulted from a number of training Precipitation T37V-T19V < -6.4 A
processes with different topologies by trial and error.
The two-way frequency table (Table V) outlines the perfor- YN
mance of the ANN classifier on the intersection data set in R
relation to average linkage method (see Table II). Based on Ocean T19V-T18H > 40.0 U
the Cochran-Mantel-Haenszel (CMH) statistics that test the L
null hypothesis of no association [18], significant association g
(p value <0.05) was found between the row variable and Ta7v > T1OV
the column variable. This may imply that the ANN learned Snow-Free T22V > 265.0 B
the central tendency of the clusters defined for each snow v N
condition. However, according to the frequency distribution of
the column variables in Table V, most misclassified conditions ANN Snow Classifier
. . . T37V T37H T22V TisV Ti9H
were related to wet snow, in which certain amount of data
elements of DsMv in the intersection set were classified
as WsSv or WsMv by the ANN. Although the overlying
vegetation and snow wetness could result in similar SSM/I T'g
patterns, the clustering method itself could be another factor {DsSv DsMv WSy WsMv RsSv ReMv |
for the misclassification since there was no guarantee that all WINNER
of the Tz patterns in a particular cluster were of the same
condition. Thus, the use of cluster means in ANN training may R
benefit from not misleading the ANN with uncertain samples. IF WsSv E
This allowed the ANN to judge similarity among uncertain Frozen Ground IOV T8 150 E
data by itself. T19V-T37H < 10.0 s
C
YN
VII. APPLICATION OF THE ANN CLASSIFIER Snow Condition

Since the ANN classifier was trained only from the six
defined snow conditions, it is not applicable to other surface
types. Accordingly, the existing classification rules for flood-
ing and precipitation (see Fig. 3, Rules A) from [2], and the
rules for ocean and snowfree (see Fig. 3, Rules B) from [27]
were used to filter out those snowfree conditions in test data
set before the use of the ANN classifier.

Fig. 3. Flowchart of the application of the ANN classifier.

As indicated in [28], the SSM/I Tz signatures of heavy
vegetation, frozen ground and wet snow are similar. It was
expected that frozen ground conditions could be embedded in
wet snow conditions classified by the ANN. According to the
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DMSP-F11 SSM/I Descending Overpass (01/09/1993 0600)

NOAA Weather Stations with Snow Cover

[] pssv [l Wssv [ Rssv [} Ocean/Lake [l snow-Free [Jj No Data
[ pemv [ wsMv [ ReMv [ Precipitation []SD > 0 mm [Jj State Line

Fig. 4. Case images of snow mapping by the ANN classifier compared with the ground-based snow distribution,
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