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Multi -criteria calibration of runoff models using additional data, such as ground-
water levels or soil moisture, has been proposed as a way to constrain parameter
values and to ensure the realistic simulation of internal varables. Nevertheless, in
many cases the availabilty of such ' hard data' is limited. We argue that experi-
mentalists working in a catchment often have much more knowledge of catchment
behavior than is currently used for model calibration and testing. Whle potential-
ly highly useful, this information is difficult to use directly as exact numbers in the
calibration process. We present a framework whereby these 'soft' data from the

experimentalist are made useful though fuzzy measures of model-simulation and
parameter-value acceptabilty. The use of soft data is an approach to formalize the
exchange of information and calibration measures between experimentalst and
modeler. Ths dialog may also greatly augment the traditional and few 'hard' data

measures available. We ilustrate the value of 'soft data' with the application of a

thee-box conceptual model for the Maimai catchment in New Zealand. The

model was calibrated against hard data (runoff and groundwater-levels) as well as

a number of criteria derived from the soft data (e. , percent new water, reservoir

volume). Whle very good fits were obtained when calibrating against runoff only
(model effciency = 0.93), parameter sets obtained in this way showed, in gener-

al, poor internal consistency. Inclusion of soft-data criteria in the model calibra-
tion process resulted in lower model-effciency values (around 0.84 when includ-
ing all criteria) but led to better overall performance, as interpreted by the experi-
mentalist' s view of catchment runoff dynamcs.

INRODUCTION ance studies and computation of design floods). The increas-
ing awareness of environmental problems has given addi-
tional impetus to hydrological modeling. Runoff models
have to meet new requirements when they are intended to
deal with problems such as acidification, soil erosion and
land degradation, leachig of pollutants, irrgation, sustain-
able water-resource management or possible consequences
of land-use or climatic changes. Linkages to geochemistr,
ecology, meteorology and other sciences must be considered
explicitly and realistic simulations of internal processes
qecome essential.

Many different conceptual models of catchment hydrolo-
gy have been developed during the last few decades (Singh

1995). These models have become valuable tools for water
management problems (e. flood forecasting, water bal-
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Despite much effort (Hornberger and Boyer, 1995),

hydrological modeling is faced by fundamental problems
such as the need for calibration and the equifinalty of dif-
ferent model strctures and parameter sets (i,e., the phe-

nomenon that equally good model simulations might be
obtained in many different waysBeven1993), These prob-

lems are linked to the limited data availability and the natu-
ral heterogeneity of watersheds (e,g" Beven, 1993;

Connell and Todini, 1996; Bronstert1999). Problems

also can be related to the procedures used for model testing,
Traditional tests such as split-sample tests are often not suf-
ficient to evaluate model validity or to assess the pros and
cons of different model approaches, More powerfl and rig-

orous methods for model calibration and testing are clearly
required (Kirchner et a!.1996; Mroczkowski et a!., 1997
Kavetski et a!.this issue).

Multi-criteria Model Calibration

Manual calibration of a model by tral and error is a time-

consuming method and results may be subjective, This is
paricularly true when calibrating against more than one
hydrological varable, Therefore, various automatic calibra-
tion methods have been developed (Sorooshian and Gupta,

1995; Gupta et a!.this volumeDuanthis volume), In gen-

eral, these methods allow for a quick and 'objective' cali-

bration, On the other hand there is the danger that model
calibration becomes a 'dumb' curve fitting exercise, By ths
we mean that unlike the manual calibration process where
the hydrologist wil implicitly make use of his/her process

knowledge (e.g, by examning different aspects of the
hydrograph or the simulation of internal varables), in the
automatic approach, only explicitly stated criteria are con-
sidered, Thus, there appears to be a need for methods to

infuse hydrological reasoning into the automatic calibration
process,

Two 'ways forward' on the equifinality issue include: (1)
makng more detailed use out of the comparson between

simulated and observed runoff series (e,

g" 

Boyle et a!.
2000; ths volume; Burges, ths volume, Freerths volume)

or (2) incorporating additional data into the model calibra-
tion procedure, Boyle et ai, (2000; ths volume), followed
the first approach and proposed a method to combine the
strengths of manual and automatic calibration methods,
Recognizing that one goodness-of-fit measure is not suffi-
cient to judge the fit of observed and simulated runoff
series, they examned different pars of the hydro graph sep-

arately, Our work, and this chapter, complements the work
of Boyle et a!. (2000; ths volume) by exploring the second
approach: e" the utilization of additional data in the model
calbration process,

The need to utilze additional data for model calibration
and testing has been emphasized by others in the recent
years (de Grosbois et a!.1988; Ambroise et ai" 1995;

Refsgaard1997; Kuczera and Mroczkowski1998; Seibert

1999; Meixner and Bastidas, ths volume), Testing runoff

models against varables other than simply catchment-outlet
runoff is important for two main reasons: (1) in many

hydrological questions, and for other sciences such as ecol-
ogy, it may be of much more interest to know what happens
within a catchment than at the outlet, and (2) to have confi-

dence in model predictions, which are often extrapolations
beyond the testable conditions, it must be ensured that the
model not only works, but also does so for the right reasons,

Most parameters of conceptual runoff models need to be
determned by calbration, Some parameters may have a
physical basis but they are effective parameters on the catch-

ment or sub catchment scale. The typical problem is that the
information contained in the rainfall-runoff relationship

usually does not allow the identification of one unique
parameter set. Reducing the number of parameters is an
unattractive option because it might transform the concep-
tual gray-box representation of the rainfall-runoff process
into a pure black-box description, Another more attractive
way to reduce parameter uncertainty is the use of addition-
al data. Frans et ai, (1998) demonstrated that the known
percentage of saturated areas in the catchment helped to
constrain calibrated parameter values and model predictions
in an application of TOPMODEL. Seibert (2000) found for
an application of the HBV model, that groundwater-level

data helped to constrain the parameters of the groundwater
routine, However, the wort of additional data vares
depending on the kind of data, but also on the strcture of
the applied model. For instance, Kuczera and Mrockowski

(1998) found that groundwater levels helped little to reduce
the parameter uncertainty in a hydro salinity model, where-

as stream salnity data more substantially reduced the uncer-

tainties. Blazkova et a!. (2002) mapped satuated areas and
found that ths information influenced optimized parameter

values for TOPMODEL, but also that the additional infor-
mation had only limited effect on constraining prediction

bounds for stream discharge,

The Concept of Soft Data

In many cases the amount of available additional data is
limited, However, a hydrologist might have a perceptual

model (Beven1993), which is a highly detailed yet qualta-
tive understanding of dominant ruI1off processes even in sit-

uations with limited field measurements, Thus, there exists
in addition to hard data (streamow hydrograph, well

record) 'soft data' about catchment hydrology and its inter-



nal 'behavior , Whle some groups have used the perceptu-
al model to guide the constrction of the model elements,

little has been done to use ths kind of data in the model cal-
ibration, The few to do ths include Frans et ai, (1998) who
used maps of surace saturated area to constrain parameter
ranges for TOPMODEL runs and Frans and Beven (1997)
who used related fuzzy measures for evapotranspiration.
Soft data can be defined as qualitative knowledge from the
experimentalist that canot be used diectly as exact num-
bers but that can be made useful when transformed into
quantitative data though fuzzy measures of model-simula-
tion and parameter-value acceptabilty, Soft data may be
based on 'hard' measurements but these measurements
require some interpretation or manipulation by a hydrologist
before being useful in model testing, Whle fuzzy, these soft
measures can be exceedingly valuable for indicating ' how a
catchment works , Fuzzy measures, which implement the
concept of parial trth with values between completely tre

and completely false, have been found to be useful in hydro-
logical model calibration (Seibert, 1997; Aronica et at.,
1998; Franks et at., 1998; Hankin and Beven, 1998).
Aronica et ai, (1998), for instance, used a fuzzy-rule based
calibration for a system containig highly uncertain flood
information, A fuzzy measure vares between zero and one
and describes the degree to which the statement is a mem-
ber of Y' , in our case, ' ths parameter set is the best pos-
sible set' is tre,

Different methods are available for automatic optimiza-
tion, Evolution-based optimization methods have been
found to be suitable tools for the calibration of conceptual
runoff models (Wang, 1991; Duan et at. 1992; Franchini
1996; Kuczera, 1997; Yapo et at. 1998, Duan ths volume),

Genetic algoriths are one class of these methods, The goal
of genetic algoriths, originally suggested by Holland
(1975; 1992), is to mimic evolution, Parameter sets are
encoded to chromosome-like strngs and different recombi-
nation operators are used to generate new parameter sets,
The optimization stars with a population of randomly gen-
erated parameter sets, These are evaluated by runnng the
model; those sets that give a better simulation according to
some objective function, are given more chances to generate
new sets than those sets that gave poorer results, Seibert
(2000) used a genetic algorith to find the tre parameter
values for a theoretical, error-free test case with synthetic
data, For a real-world case, with calibration against
observed runoff, he found that parameter values vared con-
siderably for different calibration trals, However, approxi-
mately the same model efficiency was achieved in alost
every trial, This possibilty for different parameter sets in
the case of a flat goodness-of-fit surface allows one to uti-
lize the genetic algorith to evaluate parameter uncertainty

';' f"
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using the varation of calibrated parameter values as a meas-
ure of parameter identifiability (Seibert 2000). The genetic
algorithm can, thus, provide an indication of parameter

uncertainty and serve as an alternative to Monte Carlo
approaches like, the Generalized Likelihood Uncertainty
Estimation (GLUE) techniques of Freer et at. (1996),

In ths chapter we present a method for how to use the
additional data that often exists in experimental catchments
for the calbration of conceptual runoff models, We present
a number of ' soft data ' measures as means to improve the
dialog between modeler and experimentalist. We describe
and use the implementation of a genetic algorith for cali-
bration, as proposed by Seibert (2000), and ilustrate these
methods for the Maimai watershed in New Zealand, Our
main message in ths chapter is that additional soft data may
be a useful way to ensure that a model of catchment hydrol-
ogy not only works (for runoff simulation), but also does so
for the right process reasons,

MATERIAL AN METHODS

Soft Data

We define soft data as knowledge from the experimental-
ist that canot be used directly for model calibration and
testing but that can be made useful though fuzzy measures
of model-simulation and parameter-value acceptabilty, It is
important to note that soft data may be based on 'hard'
measurements that require some interpretation or manpula-
tion by a hydrologist before being useful in model testing,
Model simulations may be judged in more process-based
ways when soft data is used compared to when only the hard
data is considered For instance, the experimentalist might
have some observations concerning the range in which
groundwater levels fluctuate within a given zone of the
catchment, or conceptual model box (based on field cam-
paign information or observations made over some irregular
time periods) or the contrbution of rainfall or ' new ' water
(McDonnell et ai" 1991) to peak flow (from event-based
isotope tracing studies), Soft data can be used to constrain
the calibration by: (1) evaluating the model with regard to
simulations for which there might be no hard data available
for comparson, and (2) assessing how reasonable the
parameter values are, based on field experience, This range
of ' reasonable ' parameter values might be wide , especially
when the parameter values are effective values at some larg-
er scale,

When comparng model simulations or parameter values
with soft data, there may be a relatively wide range of
acceptable simulations or values, Furtermore, there might

a range of values that fal between ' fully acceptable ' and
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not acceptable, based on the experimentalist's experience
in the field and other synoptic measurements, Fuzzy meas-
ures of acceptance can be used to consider these ranges
(Franks et a!.1998). For each soft data type, a trapezoidal
function (Eq, 1), where the experimentalist is asked to
assign values to the varables ai' is used to compute the
degree of acceptacef., from the corresponding simulated
quantity or parameter value x, Ths trapezoidal function is a
simple way to map experimentalst experience into a quan-
tity, which then can be optimized (Fig, 1), Other functions
with different shapes might be used instead of the trape-
zoidal function,

if x$; 

if l $; x-c a

(1)
f.(x)= if a

$; 

x-c a3

if a

$; 

x-c a4

if x)o a

An important point is that that uncertainty exists in the
experimentalst's view of the catchment and that data col-
lected in the field have their related uncertainties (Sherlock
et a!.2002). Thus, the trapezoidal function provides a way
for the experimentalist to also provide his or her uncertn-
ty bounds on the delivered rules to the modeler,

The general acceptabilty of a parameter set was defined
by thee components: (1) the goodness-of-fit measures for
the hard data such as the model effciency (Nash and
Sutclife, 1970) for runoff 

), 

(2) the goodness of the
model simulations with regard to soft data (e,

g" 

maximum
groundwater levels) as quantified using Eq, 1 (Az

), 

and (3)
the acceptabilty of the parameter values based on the

experimentalists experience 

), 

For all thee components
a value of one for coresponds to a perfect fit (or com-
plete acceptabilty),

The overall acceptability, of a parameter set is com-
puted as a weighted geometrc mean with the weights nj, nz,

and n3 (Eq, 2), can then be used as optimization criterion,

A'I A, A' with = 1

The selection of the weights in Eq, 2 nj, nZ, and n3 deter-
mines which solution along the pareto-optimalty sub-space
wil be found, The weights allow placement of more (or

less) emphasis on the different types of data, A higher value
for n j, for instance, might be justified if there is much use-
ful and accurate hard data, whereas a smaller value might be
appropriate if the hard data consists of only runoff,

Evaluation rules

Values for evaluation
rules (a

Degree of
acceptability

Sim uiated variable or

eter value para

Figure 1. Framework for formalized dialog between experimen-
talst and modeler using a trapezoidal function as a means of
assigning values to the soft data.

Description of the Genetic Algorithm

(2)

A genetic algorith utilzes an evolution of parameter

sets with elements of selection and recombination to find
optimized parameter sets (Duanths volume), An initial
population of (set to 50) parameter sets is selected ran-
domly within the parameter space, The 'fitness' of an indi-
vidual set is quantified as the value of an objective function,
A new population (generation) is generated from ths popu-
lation by times combining two parameter sets, which are
chosen randomly but with a higher chance of being picked
for sets with a higher 'fitness(i,e" objective function),
From the two parent sets (sets A and B) the new parameter
set is generated by applying for each parameter randomly
(with some probabilty, 

)' 

each of the following four rules:
(1) value of set A (Pj=0.41), (2) value of set B (Pz=0.41), (3)
random value between the values of set A and set B (alt'er-
natively, if both values were equal, a random value close to
this value) (P3=O,16), or, (4) random value withn the limits
given for the parameter (mutation) (P4=O,02), The fIrst two
rules preserve the values of the preceding generation,
whereas the other two rules provide an amount of random
search, A balance between these rules is important for the
success of the algorithm, However, within reasonable
ranges adjustments to the probabilties for the different rules
have only minor effects on the performance of the algo-
rith. Finally the fitness of each set in the new population
is evaluated and the new generation replaces the old one,
However, the best set is retained if there is no better set in
the proceeding generation, This process is repeated for a
number of generations,

The results of a genetic algorith cl;n be improved by
combination with a local search method (Wang, 1991) For

instance the parameter set found by a genetic algorith can
be used as staring point for a local optimization (Franchini



,.,

1996), In addition to this form of subsequent ' fine-tuning
a local search approach can also be implemented during the
evolution ' process (Seibert, 2000), At a small probability

(p=O,02), the new parameter set is not found by the param-
eter-by-parameter combinations as described above; instead
the new parameter set is the result of a one-dimensional
optimization along the line determned by the two parame-
ter sets using Brent's method (Press et at. 1992), In this
chapter we divide the total number of 2500 model runs into
2000 runs for the genetic algorith and 500 runs for the
subsequent local optimization, We use Powell' s quadratical-
ly convergent method for ths multidimensional, local opti-
mization, as described in Press et at. (1992),

Our genetic algorithm includes stochastic elements such
as the randomly generated initial set of parameter sets and
the parly random generation of offsprings during the 'evo-
lution ' of parameter sets, Thus , the calibrated parameter val-
ues may var for different calibration trals , when different
parameter sets result in similarly good simulations accord-
ing to the goodness-of-fit measure, Ths makes ths opti-
mization algorith suitable to address parameter uncertain-
ty using the varation of calibrated parameter values as a

measure of parameter identifiabilty, For the results present-
ed in ths study, sixty calibration trals were performed for
each goodnesscof-fit measure and the best 50 parameter sets
were used for furter analysis of model performance and
parameter identifiabilty,

The Maimai Watershed

Maimai M8 is a smal 3,8 ha headwater catchment located
to the east of the Paparoa Mountain Range on the South
Island of New Zealand, Slopes are short (-:300 m) and steep
(average 340) with local relief of 100- 150 m, Stream chan-
nels are deeply incised and lower portions of the slope pro-
fies are strongly convex, Areas that could contrbute to
storm response by satuation overland flow are small and

limited to 4-7 % (Mosley, 1979; Pearce et at. 1986), Mean
annual precipitation is approxiately 2600 mm, producing
an estiated 1550 mm of runoff, There were 11 major runoff
events durg the period of record used for model simulation
in ths study (August-December, 1987) with a maxum
runoff of 6 mm, Additional to raiall and runoff data
groundwater levels extracted from the tensiometer data in
McDonnell (1989, 1990), were available for two locations
(one in the riparan and one in the hollow zone), Mean
monthy values of potential evaporation estiated. by L.
Rowe (1992, pers,comm,) were distrbuted using a sine
cure for each day (J, Freer 2000, pers, comm,

The Maimai M8 watershed is a well-studied watershed
with ongoing hills lope research by several research teams

~~~~~
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since the late 1970s, During these studies a very detailed
yet qualitative perceptual model of hilslope hydrology
evolved (for review see McGlynn et ai, (2002)),

Conceptual Three-box Model

Whle ths chapter focuses on soft data for multi-criteria cal-
ibration, the soft data fIrst helped guide the box-model con-
strction, Our conceptual model is based on the thee reser-
voirs identied from the experienta studies at M8: riparan,
hollow and hislope zones (Fig, 2, Table 1), These zones (or
model boxes) display very dierent groundwater dynamcs
(McDonnell 1990) and group clearly based on their isotopic
characteristics (McDonnell et at. 1991), Water is simulated to
flow from the hislope zone into the hollow zone and from the
hollow zone into the riparan zone, Outfow from the riparan
zone forms the flow in the stream, Most importtly, and most
novel for ths model, is the formulation used to model the
unsatuated and satuated storage, Due to the shalow ground-
water (groundwater levels 0 - 1.5 m below the ground sur-
face) growt of the (transient) satuated zone occurs at the
expense of the unsatuated zone thckness, Thus, a coupled

formulation of the satuated and unsatuated storage was used,
as proposed by Seibert et at. (2002), In ths formulation, the

amount of satuated storage determes the maxum space
for unsatuated storage, For a more detaled description and
equations of the thee-box model the reader is referred to
(Seibert and McDonnell, 2002),

Table 1. List of parameters used in the thee-box model.

Parameter Descri tion Unit
Soil depth' (rnJ
Parameter corresponding to water (- J

content at field capacity divided by
porosity
Parameter corresponding to water (- J

content at wiltig point divided by
porosity
Shape coeffcient determing (- J

groundwater recharge
J.ripari Outfow coefficient, riparan box (h'

hollow Outfow coeffcient, hollow box , lower (h"
outfow

hOffOW Outfow coeffcient, hollow box, upper (h'

outfow
hiIlsIO Outfow coeffcient, hillslope box (h"

,hreslwfd . Theshold storage for contrbution from (rn)
upper outfow in the hollow box
Porosity ,

friparia Areal fraction of the riparan zone

hO/low Areal fraction of the hollow zone

(-)

, Different values were allowed for riparan, hollow and
. hillslope box
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Hollow box 
L.Runoff Riparian box
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rnax

Figure 2. Strctue of the thee-box model developed for the Maimai M8 watershed including hillslope, hollow and
riparan zone reservoirs. (P: precipitation, E: evaporation, z: groundwater level above bedrock, U: unsaturated stor-
age), See also Table 1.

As for any model, several simplifications and assump-
tions are made to derive ths conceptual thee-box model
(Seibert and McDonnell2002). The model strcture is guid-
ed by experimental findings at Maimai, Obviously these
simplifications and assumptions are not universally applica-
ble; for other watersheds, a different model structure may be
more appropriate (perhaps different box configuations, dif-
ferent number of boxes or different sizes and connections of
boxes), The dialogue between experimentalst and modeler
using the soft-data framework might guide ths constrction
of conceptual models for parcular catchments,

Application of the Soft-Data Framework

For presentation in ths chapter we include a subset of the
available soft data for demonstration purposes: groundwater
levels in the thee boxes, the new-water contrbution to peak
runoff, and some other parameter values, Evaluation rules
were developed using Eq, 1 to judge model performance
with regard to miimum and maximum groundwater levels
as well as the frequency of levels being above a specified

level (Table 2), The values for these rules were motivated by
field studies reported in McDonnell (1990), McDonnell et
al. (1991) and Stewar and McDonnell (1991) for the same
August-December 1987 period where groundwater response
in the riparan and hollow zones were quantified with
recordig tensiometers that show distinctly different wet-
ting, filling, draining behavior, Riparan zones were charac-
terized by rapid conversion of tension to pressure potential

(i,e" rapid conversion of unsaturated zone to a saturated
zone by storage filing and water table rise from below),
Water tables were sustained in ths zone for 1-2 days fol-
lowing the cessation of rainfall. These data provided the soft
data measures for minimum and maximum groundwater
levels and frequency of levels above a specified level (listed
in Table 2), The hollow zone response was much more sen-
sitive to rainfall inputs: conversion of unsaturated zone to
transient saturation occured within the few hours of the
hydrograph rising limb and pore pressure recession rates
closely matched stream and subsurace-trench hydrogr
recession rates, Soft data for the hillslope positions were
gathered from previous thoughfow pit analysis by Mosley
(1979) including continuously recorded pit outflow from a
number of distinct linear hillslope segments, Hilslope sec-
tions (unlike hollows and riparan zones) show very infre-
quent water table development-when water tables were
present, they were restricted vis-a-vis the soft data measure
trapezoidal function classification (see numbers in Table 2),
The soil catena sequences in the Maimai catchment as
mapped by McKie (1978) confirm these interpretations,

Hilslope soils show no evidence of any gleying whereas
gleying appears in the hollow zone and is most dominant in
the riparan zone, We view ths as a long-term expression of
the spatial delineation of boxes and water table longevity
applied in this study, Table 2 includes also a number of soft-
data rules including isotope hydrograph \ separation-derived
new-water estiates (at peakow), Values for these rules
were based on results from hydrograph separations reported
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Table 2, Evaluation rules based on soft data used for model calbration (the values for define the trapezoidal function used
to compute the degree of acceptance, see Eq, 1).

Type of soft Specifc soft information Motivation
information
New water 87093018. McDonnell et at. (1991)
contrbution to peak 871008 3. 0.40
runoff (-) 871010 17.

871013 11.00 0.35 0.41
871113 19,
8711278,

Range of groundwater Maxum hillslope 0.5 Mosley (1979)
levels, min./max. Maximum hollow 0.5 McDonnell (1990)
fraction of satuated Minimum hollow
par of the soil (- Minimum riparan 0.5
Frequency of Hillslope, above 0.5 durg events 0.3 Mosley (1979)
groundwater levels Hollow above 0,7 durig events McDonnell (1990)
above a certain level Hollow above 0.9 during events
(as fraction of soil) (-) Riparan above 0.

Riparan above 0.9 durg events
Parameter values Fraction of riparan zone (-) 0.Q Mosley (1979)

Fraction of hollow zone (-) McDonnell (1990)
Porosity in hillslope zone (-) 0.45 McDonnell (1989)
Porosity in hollow zone (-) 0.45
Porosity in riparian zone (-) 0.45
Soil depth for hilslope zone (m) McDonnell et at. (1998)
Soil depth for hollow zone (m) 0.5
Soil depth for riparan zone (m) 0.4
Threshold level in hollow zone 0.4 McDonnell (1990)
fraction of soil de th (- McDonnell et at. (1991)

in McDonnell (1989) and McDonnell et al. (1991) These
evaluation rules allowed computation of degree of accept-
ance with respect to the simulated new-water, New water
percentage is a very useful integrated measure of the relative
contrbution of rainfall versus displaced stored water contr-
butions at varous times though the storm hydrograph,
Unlike the point-based water level measures and rules, the
new water percentage subsumes point scale varabilty into
an integrated measure of catchment runoff dynamcs, In our
dataset, the new-water percentages vared, from event to
event, and some storms did not have rain isotopic concen-
tration suitable for application of the two-component mass
balance separation technique, The flexibilty of the soft data
is such that even for isolated measures from field campaigns
or experiments (or when hydrograph separation was possi-
ble) rules may be developed to guide the model calbration
process, even if this information is derived from periods out-
side the simulated calibration period,

We computed degrees of acceptance for a number of
parameters using the soft data evaluation rules, Acceptance
in ths instance is defined as the degree to which model
parameter values agree with the field experience and the
perceptual model of the catchment runoff process, These
acceptance values vared from one, if the value was withn

the desirable range and decreased towards zero with
increasing deviations from this range (Table 2), For exam-
ple, we allowed values from 1 to 10 percent for the areal
fraction of the riparan zone (i, the varable source area in

ths case), but the degree of acceptance was one, only for
values between 3 and 7 percent (based on mapped saturated
areas in the M8 catchment reported in Mosley (1979)),
Based on the individual parameters the acceptability of a
certain parameter set was computed as the geometrc mean
of the respective degrees of acceptance.

We quantified the acceptabilty of calibrations using hard
data using a combination of the efficiency measure

efJ and the relative volume error (=accumulated dif-
ference divided by sum of observed runoff for the runoff
simulations as proposed by Lindstrom (1997) (Eq. 3),
Following Lindstrom (1997), a value of 0, 1 was used for the
weighing coeffcient which determnes the relative
emphasis on the volume error, The coeffcient of determ-
nation was used to assess the performance of the simu-
lations for the groundwater levels in the riparan and the
hollow zone, and is computed as average of these differ-
ent goodness-of-fit measures (Eq, 3),

(f 
-mlv

I+ 
r;/lOliOW r;riParian (3)
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Figure 3. Three different types of relations between goodness-of-fit measures for the best realizations: a) a strong pos-
itive correlation, b) no correlation, and c) a negative correlation. Each dot represents one realization (or parameter set),
the dashed line represents the pareto-optimality and the gray circle indicates the region in which the 'best' parameter
sets are found.

Using the coeffcient of determnationwe did not
force the model to exactly fit the observations, but allowed
for an offset and a different amplitude, We argue that it is
the dynamcs, rather than the exact levels, that should be
used from ths kind of data where we compare the point
observation from the field with a simulated average behav-
ior of an entire zone (i.e" box withn the model), By also
utilizing soft data, there is no need to 'over fit' the model to
the levels obtaied from tensiometer observations at a few
observation locations - in our case, one point in the hollow
zone and another mid-way up the main valley bottom in the
riparan zone (see McDonnell (1990) for field details),

Acceptability of the model simulations using soft data 

was computed as the arthetic mean of 15 evaluation rules
of the soft data for groundwater levels and contrbution of
new water (Table 2), The arthetic mean was used in ths
instace since the geometrc mean is less suitable when val-
ues can become zero, Acceptability of the parameter values
based on soft data was computed as the geometrc mean
of nine evaluation rules of the different parameters (Table 2),

When plotting two different goodness-of-fit measures
against each other for a number of realzations (parameter
sets), the relations for the best realzations can be grouped
into thee basic cases: (1) a strong positive correlation, (2)

no correlation, and (3) a negative correlation (Fig, 3), In
case 1 the second criterion does not contrbute with addi-
tional information and only one of the goodness-of-fit
measures needs to be calculated, The situation is different
for the case 2, where the both criteria provide different
information, However, in both cases it is quite apparent
from which region one would choose parameter sets to
achieve optimal model performancei, e" from a region

where one can find realizations that are optial for both cri-
teria (see gray circle in Fig.3), In case 3 the two criteria also
provide different information, but here the two criteria are

not unrelated and "confict' one another, In other words, a
good solution according to one criterion can only be
obtained at the price of a poor performance according to the
second criterion, It is therefore not possible to find a solu-
tion that is optimal according to the two criteria simultane-
ously, since the best values for the two criteria are negative-
ly correlated, The best solutions are found along a pareto-
optimalty line (i,e" compromise-solutions), If the 'com-
promise-solutions' are too poor compared to the individual
best solutions, this might indicate a problem with the model
strcture (Seibert, 2000). As mentioned above, the selection
of the weights nj, n2, and n3 in Eq, 2 determnes which solu-
tion along the pareto-optimality sub-space (lines in Fig,
wil be found,

We tested different combinations to exame the relations
between the dierent criteria, We quantified the value of the
soft data by testig how the measures helped in ensurg
internal model consistency and reducing parameter uncer-
tanty, First we examned how model performance, as judged
by the varous criteria, vared when the model was calbrated
considering dierent sets of criteria, Second, we compared
the magntude of parameter uncertty when calbratig
agaist ruoff only and when calbratig agaist different
combinations of critena, For ths par of the analysis we used
values of 0.4,0.4 and 0,2 for the weights in Eq, 2 nj, n2, and
n3 respectively to place more emphasize on the acceptabilty
with regard to the simulations (both hard and soft data) and
less weight on the acceptabilty of the parameter values,

RESULTS

Model Peiformnce

The model was able to reproduce observed ruoff very
well, When calibrated with runoff data only, the model was



able to simulate the observed runoff with values of 0,93 for
the model efficiency (Nash and Sutclife, 1970),

Notwithstanding, while high model efficiency was obtained
with the runoff-only (hard data) calibration, goodness-of-fit
statistics for percent new water and soft groundwater meas-
ures for example, were very poor (Fig.4, shaded area), If one
examnes the simulated groundwater levels for each of the
three boxes for the runoff-only calibration, several different
response patterns are produced--ach with a high model
effciency for runoff (Fig, 5a-c), In Fig, 5a, the riparan and
hollow box fail to behave like observed reservoir dynamcs
reported in McDonnell (1990), with too much water remain-
ing in the hollow box, especially between events, Fig, 5b is
an example where each of the three boxes filled and drained
too quickly during events, Fig, 5c shows an appropriate
riparan box response but poor representation of the hollow
zone where the zone is drained too quickly, Ths is a com-
pellng example of how relying only on the traditional sin-
gle-criterion, hard-data model calibration, can produce
right answers for the wrong reasons , It each case, without
the insight of soft data, one may have been tempted to
assume that the model 'worked well' given the high model
efficiency for any of the very similar runoff simulations,

As additional hard and soft data were entered into the
model calibration, the model effciency for runoff decreased
(from the 0,93 value to 0,84) but goodness-of-fit for the
process description (i, e" soft data on groundwater, percent-
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new-water and parameter values) increased dramatically
(Fig, 4 and 6), The combined objective function (Eq, 2)

increased from 0.46 to 0, 79 when adding and A3 to the

optimization criterion, In general, the varability in the var-
ous goodness-of-fit measures decreased when more criteria
were included into the calibration, Most importantly per-
haps , the groundwater dynamcs simulated with a parameter
set obtained by ths multi-criteria calbration are in keeping
with experimental observations on reservoir response, The
goodness-of-fit of the groundwater level simulations
increased from 0,53 to 0,82 for the hard data and from 0,
to 0,60 for the soft data, for parameter sets optimized using
the combination of all criteria compared to the simulations
using parameter sets calibrated to only runoff, Furtermore
the range of objective-function values generaly decreased
when a criterion was considered during calbration,

The simulation with the best overall performance caused
a somewhat reduced model efficiency for runoff but dis-
played more 'realistic ' internal dynamcs (Fig, 6), Fig, 6 also
shows the decrease of unsaturated storage though the event
indicative of the coupled formulation of saturated and unsat-
urated storage, We argue that ths formulation is an impor-
tant and new feature of the thee-box approach because it is
a more realistic conceptualzation of the unsaturated-satu-
rated storage interactions given the shallow groundwater,
While application of the model to other catchments might
involve different arangements and numbers of boxes, the

t f
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Figure 4, Goodness-of-fit measures for runoff, groundwater levels , new water ratios , soft groundwater measures , and
parameter-value acceptabilty for calbrations against varous combinations hard and soft information (see text for def-
inition of the different optimization criteria). The symbol shows the median of 50 calibration trals and the 

vertcal lines
indicate the range of these trals, The shaded area relates to the traditional calibration approach using only runoff data
and highlghts the problem of internal consistency when calbrating against only runoff.



310 IMPROVED DIAOG BETWEN MODELER AN EXPERINTALIST

.. 0
(a)

.s 2

- -- -- -- 

Hillslope
Hollow
Riparian

(b)
e 0
C9 2

'\ I'\ ('\1 '\1

o..

~~~,. '

(c)

28-Sep0ct18-0ct28-0ct7 -Nov17 -Nov27 -Nov

Figure 5. Thee model runs with different parameter sets resulting in different groundwater dynamcs (levels in (m)
above bedrock), All thee parameter sets had been calibrated to observed runoff and gave an almost similar goodness-
of-fit (model effciency -93), None of the thee sets of groundwater time series agrees with the perceptual model of

the watershed,

coupled satuated-unsaturated zone formulation is one that
is common to many headwater catchment conditions,

Relation between Optimization Criteria

Different parameter sets wil be found though calibration
if different weights (n) are used for the overall acceptabil-
ty in Eq, 2, Using different combinations of Aand Az 

well as Aand A3 demonstrated that both soft-data criteria

(Az and A) gave different information than the hard data
) (Fig, 7), There is no conflct between the hard data and

the soft data on parameter values (A
) (Fig, 7b), e" the cal-

ibrated solutions all follow the 'no-correlation

' -

pattern

(compare Fig, 3b), On the other hand, there is a trade-off
between the hard data and the soft data on model simula-
tions (Az(Fig, 7a), e" it is not possible to find a solution
that is optimal according to both criteria simultaneously,

The solutions form a cure that lies in between the 'nega-

tive-correlation' and the 'no-correlation

' -

patterns (compare

Fig, 3 b,c) indicating that there is some confict between the
criteria, but not total disagreement.

Parameter Uncertainty

For each parameter, 50 different values were obtained by
the different calibration trials, The range between the 0,
and 0,9 percentile divided by the median was computed for
each parameter as measure of parameter uncertainty, The
ratio between the values obtained from multi-criteria soft
data calbrations and those derived from runoff-only hard

data calibrations indicated a general reduction of parameter
uncertainty (i,e" the varation of calibrated parameter val-

ues decreased) when adding differept criteria, but results
vared from model parameter to model parameter, When
optimizing the combination of all criteria , Aand 

the ratio vared between 0,03 and 0,65, The median was
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Figure 6, Simulation with best overall performance, Accumulated rainfall, simulated unsaturated storage and sim-
ulated groundwater levels (m above bedrock), as well as observed and simulated runoff, The model effciency for
runoff is 0,84 and the simulated groundwater dynamcs agree in general with the perceptual modeL
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Figure 7, Relations between model performance according to a) Al and Az as well as b) Al and A3' Each point repre-
sents the results with a parameter sets which was calbrated using different combinations of the two respective criteria
as objective function (Le., the combined acceptabilty measure with different weights ni (using a value of zero for n3 (a)

and n2 (b)),

0.4, implying that using all criteria helped to reduce param-
eter uncertainty on average by 60% relative to the single
criterion calibration against only runoff, The reduction of
parameter uncertainty was most obvious for the coeffi-
cients of the linear outflow equations, despite the fact that
no 'desirable' parameter ranges were specified for these
parameters, Including hard groundwater data or soft data
for new-water contribution to peak runoff also reduced
parameter uncertainty, but not as significantly as for the

combination of all criteria,

DISCUSSION

Soft Data to Improve Model Peiformance

When a model is calibrated against different criteria, the
overall 'best' parameter set often is a compromise between
the different criteria, In other words, when the model is cal-
ibrated against several criteria, the value of an individual
goodness-of-fit measure wil be lower than when the model
is calibrated against only ths criterion, If this decrease in
goodness-of-fit is large, then one might have to reject or
reconsider the model strcture, Seibert (2000) presents an
example where the difficulty in simulating both runoff and
groundwater levels with the same parameter set indicated a
major problem in the model strctue, With a modified

model structure, it was less problematic to optimize the
model against the two criteria,
In addition to the reduced parameter uncertainty, the

multi-criteria calibration is assumed to provide parameter
sets that are a more appropriate representation of the catch-

ment, than a calibration against only runoff, Runoff wil be
simulated slightly worse during the calibration period, but
the internal varables come into much better agreement with
the conditions in the catchment. It seems reasonable that
this improved internal consistency is associated with more
reliable predictions outside the calibration domain, This
assertion has to be tested in future studies using validation
periods during which the hydrological conditions differ
from those during calibration,

There exists a trade-off between model complexity and
parameter uncertainty, It is diffcult to test very parsimo-
nious models with, for instance, only 3-6 parameters against
data other than runoff, since measurable quantities haveno
clear counterpars in the model. In general, the testability of
models increase with increasing model complexity, On the
other hand, incorporation of additional varables used for
calibration and validation often require extending the
model, and the number of parameters may increase faster
than the amount of additional information, Additional infor-
mation may help improve the identifiability of parameter
values, as demonstrated in this study, but if the only aim is
to improve parameter identifiability, reducing the number of
parameters might be a more effcient method, However, too
parsimonious a model might be of limited usefulness if one
intends to use the model for more than simply the simula-
tion of runoff,

Relation between Optimization Criteria,

The fact that the model performance decreases when the
model is also calibrated against soft data shows that there is
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some conflct between the criteria, This was also indicated
by the results of the calibrations with different weights (Fig,
7), Ths conflct might be caused by errors in the hard or soft
data, More probably, however, it reflects the fact that the
model strcture is not perfect. Neverteless , in our study the
disagreement between hard and soft data was not tremen-
dous and one might conclude that the model strcture thus
is an appropriate approximation, We are now implementing
this approach in other well-studied experimental catchments
to better understand these relations,

Types of Soft Data

The soft data measures used in ths paper var from stat-
ic measures (e,

g" 

the spatial extent of the riparan zone) to
data on groundwater level varations and highly integrated
measures like the percent of new water at peakow, The
results of isotopic hydro graph separations have the advan-
tage that the new-water contrbution is an integrated meas-
ure of catchment response and offers much constraint on the
preceptual model of runoff generation, Few studies to date
have used isotope data in model calibration-espite the

now common use of this in watershed analysis (Kendall and
McDonnell 1998). Hooper et al. (1988) used continuous

stream 0-18 to calibrate the Birkenes mode1-other sim-
ple conceptual box model of runoff response, Similarly,
Seibert et al (2001) have used continuous stream 0-18 for
model testing, In the present study, we use the new water
ratio for discrete events rather than a continuous time series
of 0- 18, Unlike higher latitude Scandinavia where previous
attempts have been made , the Maimai catchment shows sev-
eral periods of rainfall ' cross-over ' with stream baseflow
and ground water because of the lower amplitude of the sea-
sonal 0- 18 varations (due primarly to lower annual tem-
perature range )-akng continuous time series modeling
less valuable, Nevertheless , the new-water soft-data meas-
ure is an example of making the most of data available for
a given situation, We advocate that in many catchment stud-
ies, additional (soft) data may be available that can, and
should, be used to constrain model simulations, In snow-
dominated environments , for instance, snow cover informa-
tion may be used, In cases where the expansion and con-
traction of surace-saturated areas is important (and consid-
ered in the model), knowledge of the maxmal portion of the
catchment that might become saturated can be used, Frans
et al. (1998) derived information on the extent of satuated
areas at a certain time step from remote sensing and ths
information helped to constrain parameter values of TOP-
MODEL. In most cases measurements on the extent of sat-
urated areas are not available, but hydrological reasoning
and field experience might allow specifying a range of rea-
sonable values (e,

g, 

based on topography or vegetation
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types), Mapped subsurface moisture distrbution form one-
the-ground remote sensing using non-invasive geophysical
technques may be another for useful soft data in the future,
Sherlock and McDonnell (2002) showed that groundwater
levels and soil water content could be mapped using elec-
tromagnetic induction at the hillslope scale, such techniques
become applicable at the catchment scale, such pattern data
may be a useful constraint on model parameters, At larger
watershed scales, residence time of water in different boxes
might be a useful soft data measure (Uhlenbrook et al.
2000).

CONCLUDING REMARKS

Today, obtaining some 'acceptable ' fit between observed
and simulated runoff is not such a diffcult task, even in
cases where the model strctue is not necessar physically
reasonable, Such models abound in the literatue and in
practice (Singh and Frevert, 2002). By using one simple
goodness-of-fit measure, such as the model effciency for
runoff, the calibration of a runoff model often becomes
nothing more than a curve fitting exercise, Given the num-
ber of experimental watersheds around the world, the data
and perceputal understanding of catchment hydrology gath-
ered by experimentalists should be utilized much more in
catchment modeling than it is done today, Given that addi-
tional data might allow for assessing internal model consis-
tency, we advocate that ths represents an important way
forward towards more realistic conceptual models, We
argue that the use of soft data may be a useful philosophy
and approach in ths regard, as an important complement to
the use of traditional hard data measures, normally are used
in model calibration, The concept of soft data together with
a multi-criteria calibration, is a way to mimic hydrological
reasoning (which exists implicitly in manual calibration
approaches) in automatic calibration procedures, Obviously
the exact numbers for the fuzzy evaluations (Eq, 1) and the
weighing of the three components of the overall acceptibil-
ity that we describe (Eq, 2) are, to some degree, subjective
decisions, However, these decisions , even if they are sub-
jective, are more reasonable than ignoring all the qualitative
process understanding that exists for most small research
catchments, The soft-data framework might lead towards
more reasonable model calibrations and more realistic
model simulations, This dialog, that links the experiental-
ist and the modeler might, thus, be the needed catalyst for
new progress in watershed modeling,
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