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Abstract

Dynamic TOPMODEL is applied to the Maimai M8 catchment (3.8 ha), New Zealand using rainfall–runoff and water table

information in model calibration. Different parametric representations of hillslope and valley bottom landscape units (LU’s)

were used to improve the spatial representation of the model structure. The continuous time series water table information is

obtained from tensiometric observations from both near stream (NS) and hillslope (P5) locations having different responses to

rainfall events. For each location, and within an area equivalent to an effective model gridscale (25 m2), a number of

tensiometer readings at different depths were available (11 for the NS site and nine for the P5 site). Using this information a

distribution of water table elevations for each time step at each location was calculated. The distribution of water table

elevations was used to derive fuzzy estimates of the water table depth for the whole time series that includes the temporal

variability of the uncertainty in the observations. These data were used to constrain the spatial representation of the model

having previously conditioned the model using the rainfall–runoff data. Model conditioning was assessed using the Generalised

Likelihood Uncertainty Estimation procedure.

Results show that many combinations of parameter values for the two LU’s were able to simulate the rainfall–runoff data.

Further constraining of the model responses using the fuzzy water table elevations at both locations considerably reduced the

number of behavioural parameter sets. An evaluation of the distributions of behavioural parameter sets showed that

improvements to the model structure for the two LU’s were required, especially for simulations of the response at the hillslope

location.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A pragmatic and realistic approach to environ-

mental modelling should recognise that all model

structures, regardless of their complexity, are to some

extent in error (Beven, 1989, 2002; Grayson et al.,
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1992). This can be attributed to two main factors: (1)

that our perceptual model is based on imperfect

knowledge, and (2) that the formulation of a model

necessitates the use of highly simplified mathematical

constructs that cannot represent all the details of the

many interacting processes within a natural system.

Furthermore increasing model complexity, or expla-

natory depth, increases the possibility that the amount

and type of observational data at hand will be

inadequate to fully assess model performance. Such

data limitations would be especially apparent for

semi-distributed or distributed model constructs

where the individual spatial components are rarely

tested locally.

Model evaluation is often made at the catchment

scale using stream discharge data. The use of

discharge data alone has been shown to have

weaknesses in the identification of model structures

and parameters (e.g. Freer et al., 1996). This under-

standing has led to discussions of model identifiability

(Sorooshian and Gupta, 1985; Beck and Halfon, 1991)

and of the equifinality of model structures and

parameters (Beven, 1996; Beven and Freer, 2001b).

Increasingly, recent papers have shown that being

more thoughtful about the specification of objective

functions or performance measures (PM’s) and/or the

use of multiple objectives ensures that best use is

made of limited data in model calibration/evaluation

(Gupta et al., 1998; Thiemann et al., 2001; Wagener

et al., 2001; Seibert and McDonnell, 2002; Freer et al.,

2003). One way of potentially improving the assess-

ment of models has been to introduce multi-response

data that describe different characteristics of the

system. These measures may improve the identifi-

cation of model structures and associated parameters

without increasing the complexity of the model

(Troch et al., 1993). There have now been a number

of studies where this has been explored (Kuczera,

1983; de Grosbois et al., 1988; Bloschl et al., 1992;

Grayson et al., 1992; Koide and Wheater, 1992;

Lamb et al., 1997; Mroczkowski et al., 1997; Franks

et al., 1998; Kuczera and Mroczkowski, 1998;

Guntner et al., 1999; Motovilov et al., 1999; Vertessy

and Elsenbeer, 1999; Anderton et al., 2002a; Aronica

et al., 2002; Blazkova et al., 2002; Uhlenbrook and

Leibundgut, 2002).

The introduction of data other than discharge into

the calibration process has not always produced

satisfactory results. Stephenson and Freeze (1974)

and Koide and Wheater (1992), in similar studies

using detailed 2D distributed hillslope models cali-

brated from comprehensively sampled tensiometer

and piezometer data, both noted difficulties in the

calibration of their models due to numerous data and

model simplification/initialisation factors. Grayson

et al. (1992) found that the ‘measurement of

catchment response in sufficient detail’ (i.e. limi-

tations imposed by data sparseness) was a limiting

factor in the spatial validation of the THALES model.

Hooper et al. (1988) found that using a combination of

rainfall–runoff and geochemical data to identify a

model with only six parameters called into question

‘the structural validity of more highly parameterised

rainfall–runoff models used in water quality predic-

tion’. More recently Anderton et al. (2002b) found

difficulties in using limited soil moisture and phreatic

surface information in the validation of the SHE-

TRAN model due to both the sparseness of the data

and the ‘mismatch’ of the measurement scale to the

model gridscale (see detailed discussions on using/

interpreting spatial patterns for hydrological model-

ling in Grayson and Bloschl, 2000).

While the introduction of new data sources

(beyond that of discharge) into the assessment of

models can increase model identifiability, a number of

issues may bias the conclusions:

† The data are uncertain (Sherlock et al., 2000). That

is, for many data types there may be an inevitable

degradation of quality and/or of the ability of the

data to be representative of the system of interest.

† The data may not be appropriate. That is, the

phenomenon being represented by the data may not

be commensurate with the model formulation,

therefore direct comparisons through the specifica-

tion of simple objective functions may not be

realistic

† The observations may be at the wrong scale.

That is, observations may be at a different scale

to the model scale. For scale discrepancies there

might be a range of observed behaviour that is

both large and inconsistent over time periods for

the effective model gridscale.

As a result of these points, different performance

measures may be required to match model assessment
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with the appropriate level of data quality, representa-

tiveness and scale. The error associated with models

and data and the limitations of current data technol-

ogies directs the practitioner towards an assessment of

models that is inherently probabilistic (see for

example the use of uncertain saturated area obser-

vations in Franks et al., 1998). A probabilistic

assessment allows for multiple parameterisations

and/or model structures. Nevertheless, rejection is

often difficult because of the limitations in the

available data or because of our ‘imperfect knowl-

edge’ of the system under study.

A number of calibration methodologies for this

type of approach have been developed, each having to

a greater or lesser extent assumptions regarding the

nature of the error structure, the sources of error and

the complexities of the multidimensional parameter

space response surface. This paper introduces multi-

response data (discharge and tensiometric infor-

mation) into the assessment of a hydrological model

(Dynamic TOPMODEL) within the uncertainty

analysis framework Generalised likelihood uncer-

tainty estimation (GLUE). Both stream discharge and

multiple tensiometric readings are used for two

topographically distinct sites within the Maimai

catchment, New Zealand. The variability in the

multiple readings at each site are characterised as a

time-variable fuzzy objective function in a way that is

more appropriate to the effective model gridscale and

the uncertainty within multiple observations. To

reflect the differences in these two topographically

different sites Dynamic TOPMODEL is configured

for two Landscape units (LU’s) one being a Hillslope

(HSLU) and the other a Valley Bottom (VBLU), each

having independently sampled parameter values. The

parameter interactions between the two LU’s are

assessed and conclusions are drawn as to the

usefulness of uncertain (fuzzy) gridscale information

in constraining model parameters. Specifically, we

address the following questions within the context of

this general aim of simulating the discharge and water

table (7wt) responses:

† Can we meet discharge and/or tensiometer criteria

for more than one source of information?

† How can fuzzy rules be applied to imperfect and

imprecise knowledge when the error structures are

time variant?

† How can we constrain model responses and the

efficiency of sampling?

† How can we improve the Dynamic TOPMODEL

structure and parameter representation?

This paper builds upon a recent paper by Seibert

and McDonnell (2002) that explored soft data

measures (i.e. very fuzzy notions of how the

experimentalist views the catchment rainfall–runoff

process) by examining specific internal data sets

common to many experimental catchments around the

world.

2. The study site

The Maimai M8 catchment is located in the

Tawhai State Forest, North Westland, South Island,

New Zealand. It is one of eight small adjoining

catchments that have been studied since 1974 as part

of a land use change study. The layout of the

catchment is shown in Fig. 1a–d.

Mean annual gross rainfall in this area is approx.

2600 mm, producing some 1550 mm of runoff from

1950 mm of net rainfall (Rowe, 1979), with little

seasonal variation. The Maimai catchments are highly

responsive to rainfall, Pearce and McKercher (1979)

reported that quickflow represents 65% of annual

runoff (39% of total rainfall), as defined by Hewlett

and Hibbert (1967) separation method. Sklash (1990)

commented that ‘The Maimai catchments are among

the most hydrologically responsive forested head-

water catchments documented’

The surficial geology of Maimai catchment is

firmly compacted, moderately weathered, early Pleis-

tocene conglomerate, which is known as the Old Man

Gravels and has been described as ‘effectively

impermeable’ by Mosley (1979). The relief of the

catchment is in the order of 100–150 m, with steep

(average 348), short (less than 30 m) slopes (see

Fig. 1a). Soil development has weathered the

conglomerate to form (as a broad classification),

Blackball Hill soils (Mew et al., 1975). These soils are

spatially quite variable in both depth (0.2–1.8 m) and

character, having a thick well developed upper humic

horizon (mean 170 mm, Webster (1977)). The upper

mineral soil has been found to have an average

saturated hydraulic conductivity of 250 mm h21
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Fig. 1. Maimai M8 catchment: (a) The spatial variability of the ln (a/tanb) index and (b) the spatial distribution of the VBLU and HSLU LU’s.

Details of the study area showing the position of the tensiometer instrumentation at (c) the Near Stream and (d) the Pit 5 sites.
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(Webster, 1977). However, using a Guelph permea-

meter, McDonnell (1989) found this value to be

highly variable, ranging from ,5 mm h21 in poorly

drained hollows to the value reported by Webster in

well drained nose slopes. The average infiltration

capacity of the soil surface has been reported by

Webster (1977) as 6100 mm h21.

The vegetation of the catchment is classified as a

mixed evergreen forest, the main cover being

dominated by southern beech, podocarps and broad-

leaf hardwoods. The forest is multi-storied, the

understorey consists of dense tree fern and shrubs

and has a ground cover of ferns and herbs (Pearce et al.

1986). A more detailed physical description of the

Maimai M8 catchment can be found in Rowe et al.,

(1994); McGlynn et al. (2002).

2.1. The tensiometer study sites

The layout of the Maimai M8 catchment is shown

in Fig. 1, and has been extensively documented by

Pearce et al. (1986). The intensive monitoring of the

0.3 ha subcatchment and the Near Stream (NS) site

was undertaken over a number of storm events during

September to December 1987 (McDonnell, 1990).

The data collected included tensiometer, trough flow,

and chemical and isotopic tracer samples, as well as

hydrometric data based on a 10 min time step. Two

tensiometer sites were used from this intensive study,

these being the NS (Fig. 1c) and P5 (P5—Fig. 1d)

sites, both of which have been reported in McDonnell

(1990) with regard to 3D matric and total potential ðfÞ

responses. Tensiometers were situated away from any

visible cracks and voids to ensure they characterised

only the changes in the soil matrix (McDonnell,

1990). The topographic position of the two sites

differs considerably (see Fig. 1a), with the NS site

having a close proximity to the stream channel

(,4 m) and the P5 site on a steeper upslope section

(some 40 m from the stream channel). Consequently

the data provide a good test of the possible variation in

water table responses in two topographically distinct

areas of the catchment. These two catchment positions

have been shown to differ considerably in their

groundwater response (McDonnell, 1990), soil water

isotopic composition (McDonnell et al., 1991) and

solute concentrations (McGlynn and McDonnell,

2003). The variations in soil properties between

these two sites are given in Table 1 and will be

referred to in later sections.

The P5 site consisted of an electronically multi-

plexed and logged array of 32 tensiometers (arranged

within a grid 6 m by 1 m), whereas the NS site had 24

tensiometers (in 4 m by 0.5 m) that were linked via a

fluid scanning switch to a single pressure transducer.

The P5 site had continuous logged data, which were

recorded at the same time for all tensiometers. Due to

the fluid scanning switch at the NS site, a single

reading was taken in rotation at a maximum resolution

of one minute increments, although this increment

sometimes increased to 5 min for short (recession)

periods. Details of the tensiometer design and

performance are given in McDonnell (1993). The

tensiometers ranged in their depth below the soil

surface from 15–124 cms for the P5 site and 10–

78 cms for the NS site.

Readings from the two sites were not available for

the complete discharge period (see Fig. 2). The data

Table 1

Local DTA values, soil and topographic characteristics for both the Near Stream and Pit 5 sites as well as average data for the Maimai

Catchment

Site DTA results Observed field data

ln (a/tanb) Acc. Area Soil depth (m) Slope (8) Total porosity (%) Saturated conductivity (m/h)

Near streama 4.03 183.0 0.5 15 52 –

Pit 5a 3.04 101.9 1.5 34 68 –

Catchmentb – – 0.6 – 45c 0.01–0.3d

a Observed field data from McDonnell, J.J. (pers comm.)
b Data taken from McGlynn et al., 2002.
c Top 0.17 m organic horizon 86% total porosity (39% macroporosity).
d Soil Infiltration rate 6.1 m/h.
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collected for the P5 site were available from 2/10 at

19:40 to 17/12 at 14:30, and for the NS site from 7/10

09:20 to 18/11 at 00:00. Within these limits the data

had a considerable number of short and long ‘breaks’

(equipment failure etc.). Most of the longer breaks

occurred during recession periods, however, some of

the smaller disruptions occurred during events, or

meant that some of the smaller storm events were not

available.

McDonnell (1990) detailed results from the NS site

for tensiometers T1–9 and from the P5 site for

tensiometers T1–16 and T23–25 for the October 29th

storm event. There were considerable difficulties in

creating a coherent data set for an extended period,

mainly due to periods of failed tensiometers. The

intention was to incorporate as many tensiometer

readings as possible into the calculation of a 7wt

series, so that a proper account was taken of the

variability of the tensiometer response at a scale that

was consistent with the model gridscale (see discus-

sion by Bathurst and O’Connell, 1992). Due to

problems of equipment failure and extreme electrical

noise, not all of the tensiometers at the two sites were

used. Furthermore, shallow tensiometers at the P5 site

were sensitive to the wetting front propagation down

through the soil profile during precipitation events,

these sensitivities would not be directly related to the

7wt formation from the soil-bedrock interface and

were also excluded. This resulted in nine tensiometers

at the P5 site and 11 at the NS site that could be used

in the following methods. These tensiometers covered

areas of 4.5 m £ l m and 4 m £ 0.5 m, respectively,

and are shown as filled circles in Fig. 1c and d along

with their cup depth below the soil surface. Notwith-

standing, the tensiometer responses are consistent

with similar responses on steep wet hillslopes

published more recently on comparable slopes in

Oregon (Torres et al., 1998), Japan (Uchida et al.,

2001) and Singapore (Rezaur et al., 2002).

3. Methods

3.1. Calculation of water table responses at both

tensiometer sites

Tensiometer readings have positive matric poten-

tial when the porous cup is below the water table

surface, negative matric potential when the tensi-

ometer cup is above the water table surface and zero

values at the water table surface. Variations of matric

potential at the NS site for all tensiometer readings

used in this study are shown in Fig. 2 for the whole of

the study period. Fig. 2 shows that positive (þve)

matric potentials are observed for much of the study

period. For the P5 site þve potentials were more

transient, having steeper recessions (which are

reflected in the 7wt variations shown for both sites

in Fig. 6).

The relationships between 2ve matric potentials

and soil water content can be complex and have been

well documented (Kosugi and Inoue, 2002; Torres

and Alexander, 2002). Soil water retention curves

have been determined for many different soil types

Fig. 2. Near Stream site shallow and deep tensiometer readings adjusted to matric potentials. All available tensiometer responses are plotted

against catchment discharge for the whole of the observation record used in this study.
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and generally show hysteresis behaviour between the

wetting and drying curves. Burt and Butcher (1985;

1986) developed a simple methodology that used

average gradient of soil water potentials (from a

number of tensiometers at different depths) to predict

the depth of the 7wt at the soil-bedrock interface.

Using field calibrations obtained from Butcher

(1985)] they suggested that the average gradient (at

their experimental site at Slapton Wood, UK) under

2ve tensions was 1.2 cm soil water potential per cm

soil depth (a linear relationship). We used the Butcher,

1985 method to develop a relationship between 2ve

soil water tensions and apparent depth to the 7wt at

Maimai. The 7wt is directly inferred during periods

where the deepest tensiometer is below the 7wt

surface (in þve tension). Matric potentials, expressed

in terms of head units (m), were linearly adjusted to a

7wt surface, for both þve and 2ve readings, by

correcting readings to the ground surface datum by;

ZwtðtÞ ¼ ZTðtÞ2 fTðtÞ ð1Þ

where ZT is the depth of the tensiometer (m) and fT is

the matric potential reading of the tensiometer

[m H20] at time t: It should be noted that Eq. (1) is

only valid if it is assumed that vertical soil water

fluxes are negligible, suggesting that the soil is in

equilibrium and total potentials are constant through-

out the soil profile. Fig. 3a and b show for the

recession period of the October 29th storm event the

relationship between 2ve matric potentials and

height above the water table for all tensiometers at

the NS (Nest 4) and P5 (Nest 1) sites (see Fig. 1)

during periods where the deepest tensiometer is

in þ ve tension (i.e. T10 and T4, respectively). A

recession period is chosen to avoid wetting fronts

affecting tensiometer readings during precipitation

events. Significantly fewer points were available for

the P5 site because the peak response was much more

transient so that þve tensions were not maintained at

T4. For the NS site a linear relationship provides a

good correlation between 2ve tension and height

above 7wt(R
2 ¼ 0.94), having a similar slope gradi-

ent to that found by Butcher (1985), namely 1.16 cm

soil water potential per cm soil depth. For the P5 site

the linear relationship does not seem to hold as well

ðR2 ¼ 0:91Þ; the slope gradient is much higher

(2.4 cms/cm) and the relationship for the site appears

to be only quasi-linear having a lower gradient for

smaller 2ve tensions. For these hillslope soils a more

appropriate relationship is found using a second order

polynomial (a ¼ 1:192; b ¼ 0:048;R2 ¼ 0:97). Such

non-linearity may be the result of the 2ve matric

potential gradients being non-uniform in the unsatu-

rated zone for these soil types (note that the initial

slope gradient is again similar to the results of Butcher

(1985)). Confidence in this relationship increased

further after calculating the predicted 7wt depth for all

tensiometers at P5 (Nest 1) over a much longer

recession period (i.e. for a higher 2ve potential

range) the results of which are shown in Fig. 3c. The

variability in the 7wt predictions over the recession

period is low but tends to increase with increasing 7wt

depth (to a maximum in this case of 20 cm). However,

such variability within local tensiometer nests is much

less than the 7wt predictions between the local

tensiometers nests (i.e. the variability at the effective

model gridscale) for both the NS and P5 sites (see

below and Section 3.2), including periods where þve

tensions were observed at multiple sites.

The methods described above allowed þve tension

(using Eq. (1)) and 2ve tension readings using the

linear and polynomial relationships for the NS and P5

sites, respectively, to be used to predict the 7wt

variations for the whole study period. To summarise

the variability of 7wt predictions throughout the study

period Fig. 4 shows the variability in the range of 7wt

observations for different depths (classified by the

observed mean depth for each timestep), for the

minimum to maximum and 25th to 75th inter-quartile

range for both the NS and P5 sites. Fig. 4 also gives

the percentage of time that each depth occurred during

the series, this clearly showing the more transient

nature of shallow 7wt observations at the P5 site with

higher frequencies of occurrence being skewed

towards deeper 7wt depths. These plots show that

the mean and inter-quartile ranges of 7wt observations

vary with depth, increasing with increasing depth for

the NS responses and with depths associated with

more rapidly changing 7wt fluctuations during events

for the P5 site (see Fig. 6).

3.2. A fuzzy measure of water table responses

at the model gridscale

We have identified that the tensiometer responses

used in this study are not themselves wholly accurate
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predictions of the 7wt as seen in the regression

relationships presented in Fig. 3. Furthermore signifi-

cant local variations of the 7wt are observed at a scale

that is more commensurate with the model gridscale

and the magnitude and distribution of these variations

change with time. What we require therefore is a

performance measure that for each timestep and at

the model gridscale reflects the noise in the data, the

variability in the timings of the 7wt, and

the uncertainty in the information expressed within

the regression relationships between 2ve tensions

and height above the 7wt surface. Taking into account

the standard errors in the regression relationships

would lead to a wider range of uncertainty in the 7wt,

Fig. 3. The relationships between observed 2ve matric potentials and heights above a known 7wt (at least one tensiometer in þve tension) for

(A) the Near Stream site, Nest 4 and (B) the Pit 5 site, Nest 1. The plots show the regression curves used to describe these relationships for both

cases. For the Pit 5 site, Nest 1 (C) shows for each tensiometer the depth to the water table for an extended recession period calculated using the

regression relationship shown in (B).

R

Fig. 4. The variability in the range of 7wt levels for the two distribution limits used to define the fuzzy numbers for each timestep (i.e. the min–

max for the support and the 25th and 75th for the core values of the fuzzy number) summarised for the whole of the observed data series by

categorising the readings at each time step by the mean 7wt level. The range and mean 7wt levels are determined separately for each tensiometer

site from the variability in all tensiometer observations adjusted to depth using the regression relationships shown in Fig. 3. Results for the Near

Stream site are shown for the support limits in (A) and the core limits in (B), with the same limits shown for the Pit 5 site in (C) and (D)

respectfully. For all plots the frequency that each mean 7wt category is sampled (i.e. the number of time steps) for the whole data series is also

shown.
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but given the high correlations found in these

relationships (see below) the resulting increase in

uncertainty would be small relative to the range of

predictions between tensiometer readings. Therefore

so as not to unduly bias the assessment of model

performance a fuzzy additive definition of the

performance measure was used, having the following

form of membership function (see Ross, 1995):

L½MðQilYT;WTÞ�

¼
Xn

t¼1

0 zt $max wt

zt 275 wt

maxwt 275 wt
75wt # zt #max wt

1 …if… 25wt # zt #75 wt

zt 2min wt

25wt 2min wt
minwt # zt #25 wt

0 zt #min wt

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

where MðQilYT;WTÞ indicates the ith model simu-

lation run, conditioned on input data YT and

observations WT: For each timestep t the simulated

local 7wt depth zt is compared to the distribution of

7wt observations defined by the core (the 25th ð25wtÞ

and 75th ð75wtÞ quartiles) and the support (the min

ðminwtÞ and max ðmaxwtÞ values) of the fuzzy member-

ship function. Essentially Eq. (2) defines a trapezoidal

fuzzy membership set (see Fig. 5) for the observed 7wt

responses, the characteristics of which depend on the

distribution of the local 7wt depth at each timestep.

The core of the set being the range of depths where we

believe that the simulated zt would be a complete and

full member of the observations and the support being

the range of depths either side of the core where we

have a nonzero membership (i.e. that we become less

sure that the simulation is a member the closer this

value approaches the support limits).

The assignment process that defines the form of the

membership function can involve many methods,

ranging from intuition (i.e. what is the range of

saturated area in this catchment that we believe is

possible?) to the use of more formal methods such as

inductive reasoning and the use of fuzzy statistics (see

Ross, 1995). Membership functions may or may not

have a core range and or have much more complex

forms (e.g. multi modal, subnormal and non-convex)

depending on the observations that are available. The

assignment procedure used here would formally be

known as an inference procedure (i.e. deductive

reasoning from some knowledge of the system). In

this case using the 5th and 95th percentiles as the

support limits rather than the minimum and maximum

values was rejected as there was felt to be no

justification for totally rejecting the possibility that

the outer 7wt readings were correct. The trapezoidal

measure was chosen as this represented a compromise

between the difficulties of defining what was the ‘best’

7wt observation at each timestep (a membership

function without a core range) and the advantage of

favouring mid-range 7wt values that would not be the

case using a crisp set (i.e one without boundaries—

see Fig. 5). Fig. 6 shows the resultant support limits

for the 7wt membership function (the core is not

shown for clarity) and the individual 7wt observations

at both tensiometer sites for all timesteps where data

are available. These results clearly show that the

amount of uncertainty in the 7wt surface varies

considerably during the study period, that this

variation is significant for similar 7wt depths at

different time periods (especially for P5) and that each

tensiometer study site has different characteristics of

variability.

3.3. The hydrological model—dynamic TOPMODEL

The new Dynamic TOPMODEL version is briefly

described below to allow the reader to understand the

spatial context of the model structure and associated

parameters applied to Maimai catchment. For a more

detailed treatment of the model application and model

theory the reader is referred to the paper by Peters et al.

Fig. 5. An example of the construction and terminology of a fuzzy

number used in this study. The limits (minwt, 25wt, 75wt and maxwt) are

determined using Eq. (2).
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(2003) and to the original paper on Dynamic

TOPMODEL by Beven and Freer (2001a).

Dynamic TOPMODEL (Beven and Freer, 2001a)

is a new version of TOPMODEL that relaxes some

of the assumptions of the original form (Beven and

Kirkby, 1979) following critiques of TOPMODEL

by Barling et al. (1994); Beven (1997), and

Wigmosta and Lettenmaier (1999). This new

formulation allows for local accounting of hydro-

logical fluxes and storages, relaxing the quasi steady

state assumption of a water table parallel to the

local surface slope expressed through the derivation

of the ln (a/tan b) index of Kirkby (1975). Therefore

the dynamics of the subsurface saturated zone

during wetting and drying event periods (expanding

and contracting) can be simulated. Previous field

evidence had suggested that the original assumption

of an effective upslope contributing area extending

to the catchment divide during wetting-up periods

was thought to be unrealistic (Barling et al., 1994;

Guntner et al., 1999). Beven (1997) suggested that

the overestimation of the accumulated upslope area

‘a’ was being compensated in the results by

generally high transmissivity values, this being

seen in original TOPMODEL applications. Dynami-

cally varying upslope contributing areas ‘a’ are

conceptualized in a simple form with the addition of

the parameter Smax (the maximum effective deficit of

subsurface saturated zone), which in a simple form,

as in this example, restricts down slope flow only to

areas where the local deficit si $ Smax Areas with

shallow regolith depths (small SmaxÞ and areas near

the catchment divide, would be more likely to

‘disconnect’ upslope areas during recession periods.

Beven and Freer (2001a) found the best behavioural

simulations of discharge at Slapton Wood catchment

in the UK occurred with a dynamically varying

upslope contributing area (i.e. when Smax became

active). However, good/acceptable (behavioural)

simulations were also obtained for simulations

where no change in the upslope contributing areas

was predicted.

Fig. 6. Observed water table responses calculated from the tensiometer data for both (A) Near Stream and (B) Pit 5 tensiometer sites. The plot

shows the resultant upper and lower min and max limits for the water table responses defining the model gridscale variability of the

observations.
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Without any further information on the spatial

variability of hydrological processes a 2D classifier

matrix ½a; T0tan b� is used as measure of hydrological

similarity, where T0 is the transmissivity measured in

the direction of downslope flow, tan b the local slope

angle, and a as before. Using a 2D classification

matrix that includes ‘a’ ensures the resulting hydro-

logically similar units (HSU’s—now used as the local

hydrological accounting units), maintain a general

continuity of flow in a downslope direction but whose

fluxes are dynamically variable. Topographic analysis

allows the calculation of a transition probability

matrix for a water drop to move from one class to

another (an extension of the multi-flow algorithms of

Quinn et al. (1991)). In this way, the water balance for

each HSU can be solved. Transfers between HSUs are

calculated using a kinematic wave approximation,

where both the upslope (for inputs) and local (for

outputs) storages are required. Flux volumes are a

function of the storages and the T0tan b values in each

case (Beven and Freer, 2001a). As with the original

TOPMODEL, an exponential transmissivity profile

and a constant effective storage coefficient are

assumed in each LU. Experience in a number of

catchments in different countries suggests that the

transition from hillslope to valley bottom LU’s is

often quite marked and will require the use of different

parameter values in each LU.

The model also allows for the spatial organisation

and connectivity of different HSU’s, each having

potentially different functional forms of hydrological

(and/or other) responses. Including different func-

tional forms requires some knowledge of the spatial

variability of hydrological response, which may often

be limited (especially within the subsurface) at a scale

pertinent to catchment scale responses. Peters et al.

(2001) conceptualised Dynamic TOPMODEL for

Panola Mountain Research Watershed (PMRW) to

include the spatial variability of distinct LU’s,

primarily though the distribution of regolith depths.

These LU’s were assumed to have different hydro-

logical/physical characteristics that were controlling

hydrological response and therefore required the

definition of different parameter ranges and/or

model structure. In this study the catchment has

been separated into two LU’s, a HSLU and a VBLU

component (see Fig. 1), the general break in slope

between the VBLU and HSLU areas defined the spatial

extent of these units. Two LU’s were identified

primarily to study the interactions between parameter

sets when simulating the discharge and the NS and P5

7wt responses. The spatial variability of hydrological

response due to additional topographic features at

Maimai (i.e. ridges and hollows), is characterised

explicitly in the model using the classifer matrix of

hydrological similarity (described above).

A previous application at Maimai using the

original form of TOPMODEL by Freer (1998)

showed that no parameter sets (using homogeneous

parameter values) could be identified that satisfac-

torily simulated the 7wt responses at both sites,

although when treated individually behavioural par-

ameter sets could be identified for each site. The

functional differences in the LU’s are here expressed

by the differences in the parameter ranges for each

unit (see Table 2), i.e., the same functional form is

retained for each LU, including the assumption of an

exponential decline in transmissivity with depth.

Table 2

Parameter descriptions and ranges for the VBLU and (in {}’s) the HSLU for the Monte-Carlo simulations for run1

Parameter Units Lower limitsa Upper limitsa Description

SZM [m] 0.001 {0.005} 0.012 {0.017} Form of the exponential decline in saturated hydraulic conductivity

with depth

ln (T0) [m2 h21] 27.0 {27.0} 3.0 {3.0} Effective lateral saturated transmissivity

SRmax [m] 0.005 {0.005} 0.08 {0.08} Maximum soil root zone deficit

SRini [m] 0.00 {0.00} 0.01 {0.01} Initial root zone deficit

CHV [m h21] 250 {250} 1500 {1500} Channel routing velocity

Td [h] 0.10 {0.10} 40.0 {40.0} Unsaturated zone time delay

Du 0.05 {0.01} 0.60 {0.30} Effective porosity

Smax [m] 0.60 {0.60} 2.00 {2.00} Maximum effective deficit of the subsurface storage zone

a Parameter upper and lower ranges for both the valley bottom and hillslope.
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The 2-LU model has 14 parameters (CHV and SRinit

are sampled once for each simulation, then assumed

constant for all LU’s). The catchment was divided

using digital terrain analyses (5 m2 DEM) into 41

HSUs for the model simulations.

3.4. GLUE simulations of discharge and water table

information

Freer (1998) used the original form of TOPMO-

DEL applied to Maimai for both discharge and 7wt

simulations (at the NS and P5 sites) as reported here

but using a weighted Nash efficiency measure

(weights calculated from the uncertainty in the 7wt

depth) within the GLUE procedure. As noted above

no homogeneous catchment parameter sets could be

found that simulated the 7wt responses at both

tensiometer sites. Recently Beven and Freer

(2001b), also using the original form of TOPMODEL,

analysed multiple years of discharge data at Maimai

and found that once uniform prior distributions had

been constrained using 1 year of data, subsequent

years did little to constrain parameter estimates

further. This paper extends these analyses by asses-

sing multi-objective variations in model performance

for dynamic TOPMODEL within the GLUE method-

ology using fuzzy performance measures. The multi-

objective data in this case are the discharge and the

7wt information at both tensiometer sites. For the

initial simulation runs all parameters listed in Table 2

were randomly assigned a value appropriate to the

ranges specified for each LU (where appropriate). For

initial simulations a uniform sampling strategy of the

parameter ranges was deployed to express the lack of

knowledge of the expected distribution and covari-

ance of the parameter values. The model streamflow

and 7wt predictions for the study period were

compared to the observed data using one of the

three Performance Measures and rejection criteria

defined in Table 3. For each tensiometer site the

midpoint position of the tensiometer nests was used to

georeference this data with the DTM coverage. The

time series of the simulated 7wt predictions for both

corresponding HSU increments and the catchment

outfall discharge predictions were retained for post

analysis along with the parameter values for the model

run. Differences among behavioural parameter sets

were evaluated for each performance measure.

The GLUE simulations were conducted on a

parallel LINUX PC system at Lancaster University.

The system consists of 47 nodes having a combination

of AMD 800, 1500 and 2600 MHz processors. The

topology used was a simple master slave combination

via 100 Mbps Ethernet using basic batch processing

scripts for job submissions (one job per slave unit).

The initial 5,600,000 simulations took 2 days to

complete (on 6 fast nodes) for the 1987 study period.

4. Results and discussion

In total 6.8 million runs of the model were

generated. The initial 5.6 million runs described

above are referred to hereafter as run1. To see how

much the efficiency of sampling could be improved

from run1 a further 1.2 million more runs of the model

(run2) with reduced parameter ranges were generated

(where these could be determined from behavioural

simulations that resulted in constrained parameter

ranges from run1, see Table 4). This run also

employed a uniform sampling strategy. The results

presented in the following result sections are initially

from run1, but the final dotty plots and confidence

limits presented in Figs. 8–10 are calculated from

Table 3

Discharge and 7wt performance measures and their acceptability criteria evaluated for the dynamic TOPMODEL GLUE simulations

Performance measure Equation Acceptability criteria

R2 discharge L½MðQilYT;WTÞ� ¼ ð1 2 s2
1=s

2
oÞ

N a 0.6

1000

Near stream FUZZY additive Eq. (2) (in text) (maximum possible 2464)

2000

P5 Fuzzy additive Eq. (2) (in text) (maximum possible 4149)

a Where s2
1 is the error variance; s2

o is the variance of the observations and N ¼ 1:
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run2, having a total number of behavioural parameters

sets shown in the second part of Table 5.

4.1. Simulating the discharge and 7wt responses

separately

Fig. 7 shows the distribution of behavioural

parameter values (from run1) for both LU’s over the

sampled ranges listed in Table 2. Each column is

associated with parameter ranges that meet one or

more behavioural criteria using the multiple objec-

tives identified in Table 3. Table 5 lists the number of

behavioural simulations associated with each criteria.

Simulations meeting the behavioural criterion for

discharge (Fig. 7 - column 1) show limited parameter

sensitivity for the ranges sampled, only SZM and

ln (T0) from the HSLU show any sensitivity, with only

the ln (T0) parameter constrained to its lower range

from the initial sampling limits listed in Table 2.

Table 5 also lists the large number (41% of the initial

sample of 5.6million runs) of simulations that meet

the behavioural threshold for the discharge criterion.

Surprisingly almost no sensitivity is seen in the VBLU

parameters for simulations of discharge. Freer et al.

(2003) reported a similar effect for Dynamic TOP-

MODEL simulations at PMRW where three LU’s

were identified. In that study, parameters for the VBLU

showed little sensitivity to discharge simulations. At

PMRW this was attributed to a greater sensitivity of

the HSLU dynamics to wetting and drying cycles

needed to capture the high seasonality in observed

discharge. In both cases the insensitivity of the VBLU

could well be attributed to the relatively small areal

extent of the LU (9% for PMRW and 12% for

Maimai) as well as the product of landscape position

and model conceptualisation. This suggests that for

discharge simulations a simpler conceptual form for

the VBLU could be identified, potentially resulting in

fewer, more easily identifiable parameters. Finally

Smax; proven to be an important parameter for other

applications of Dynamic TOPMODEL (i.e. Beven

and Freer, 2001a) appears redundant here, perhaps

reflecting the climatic and physical conditions found

at Maimai (i.e. steep slopes, high transmissivities,

consistently wet conditions). The need for a dynamic

subsurface saturated zone that primarily controls

wetting and drying cycles is not required for

behavioural simulations. For simulations meeting the

fuzzy criteria for both tensiometer sites independently

Table 4

Parameter ranges for the VBLU and (in { }’s) the HSLU for the

Monte-Carlo simulations for run2

Parameter Units Lower limitsa Upper limitsa

SZM [m] 0.003 {0.005} 0.012 {0.015}

ln(T0) [m2 h21] 25.0 {22.0} 4.0 {5.0}

SRmax [m] 0.005 {0.005} 0.08 {0.08}

SRini [m] 0.00 {0.00} 0.01 {0.01}

CHV [m h21] 250 {250} 1500 {1500}

Td [h] 0.10 {0.10} 40.0 {40.0}

Du 0.01 {0.01} 0.40 {0.10}

Smax [m] 0.60 {0.60} 2.00 {2.00}

a Parameter upper and lower ranges for both the valley bottom

and hillslope.

Table 5

Behavioural simulations for individual and combined acceptance criteria for the performance measures identified in Table 3 from both run1 and

run2

Acceptability criteria run1 behavioural simulationsa run2 behavioural simulationsb run1 and run2

Total number Sampling efficiency (%) Total number Sampling efficiency (%) Sampling efficiency increase

Discharge only 2,327,664 41.56 1,016,325 84.69 2.0

NS 7wt only 196,591 3.51 118,519 9.87 2.8

P5 7wt only 16,195 0.28 39,128 3.26 11.5

Discharge and NS 7wt 84,636 1.51 98,218 8.18 5.4

Discharge and P5 7wt 11,987 0.21 34,205 2.80 13.3

NS 7wt and P5 7wt 614 0.011 3,692 0.31 28.2

Discharge, NS and P5 7wt 419 0.007 3,184 0.26 37.1

a Total number of all simulations was 5,600,000.
b Total number of all simulations was 1,200,000.
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Fig. 7. Dotty plots of behavioural parameter distributions for both the VBLU (rows1-7) and the HSLU (rows 8–14) for the different performance

measures (or combinations of measures) listed in Table 3. Each column distinguishes between the different performance measures or

combinations of measures (plots show a random sample of up to 1,000 points from the total number of behavioural parameter sets listed in

Table 4).
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(see Table 3) there are different but somewhat

consistent results with the discharge simulations

(Fig. 7 columns 2 and 3 for the P5 and NS sites

respectfully).

For the P5 site the HSLU parameters SZM and

ln (T0) show similar distributions to the discharge

simulations. However, Du1 is now highly sensitive in

its lower range and SRmax also shows some sensitivity.

The high sensitivity of Du1 should be expected, this

parameter is one of the primary controls of the mean

depth of the predicted 7wt within the model (the

difference in the water content between saturation and

field capacity), effectively acting as a simple scaling

of the local moisture deficit. For this criterion the

number of behavioural simulations is much reduced

(see Table 5), and can be attributed to the high

sensitivity of Du1 reported reducing the efficiency of

the uniform sampling employed.

Comparing the number of behavioural simulations

for the NS site with those for the P5 site the latter

produces a considerably greater number. This is

directly reflected in the broader range of Du1 for the

VBLU that partly results from wider fuzzy limits in the

observed 7wt series (especially at depth) shown in Fig.

4. What is surprising about the simulations meeting

the NS behavioural criterion is how little sensitivity is

observed within the HSLU, especially given the

proximity of this LU to the NS site (see Fig. 1b).

4.2. Meeting discharge and/or tensiometer criteria

for more than one source of information

Parameter distributions from simulations that are

behavioural for a combination of two PM criteria from

Table 3 are shown in Fig. 7 columns 4–6 and for a

combination of all PM in Fig. 8. To simply highlight

the combined effect of the PM’s to the parameter

sensitivity the dotty plots shown in Fig. 7 are either a

multiplicative combination of discharge and 7wt PM’s

(Fig. 7, column 4-5) or an additive combination of the

combined NS and P5 7wt PM’s (Fig. 7, column 6).

Due to the insensitivity of the VBLU for discharge,

coupled with the similarity of the behavioural

distributions for discharge and P5 PM for the HSLU,

the combined behavioural PM distributions almost

always reflect the PM sensitivity for the individual

7wt distributions previously shown in Fig. 7 (columns

2 and 3). Combining discharge with the NS and P5

PM’s further reduces the number of behavioural

parameter sets (Table 5). However, only 3.8% of

parameter sets are retained for a combined NS and P5

PM from the maximum possible number of beha-

vioural parameter sets for either of these two sites.

This incompatibility of parameter distributions is the

result of the general insensitivity of each LU’s

parameters to simulating the other LU’s 7wt infor-

mation. In combination the void space throughout the

parametric hyperspace (i.e. the area of the parameter

space where no behavioural simulations are found)

increases rapidly due to the constraining of parameter

ranges in both LU’s, thus reducing sampling efficien-

cies (i.e. a reduction in the percentage of the total

number of simulations that are behavioural).

Fig. 8 shows the marginal posterior likelihood

weighted distributions of individual parameters as

histograms, and the interaction of parameters both

within and between LU’s for the final behavioural

parameter sets constrained using all three PM’s from

run2 (having an efficiency of sampling of 0.26%, see

Table 5). Parameter sensitivities are similar to those

shown in Fig. 7 column 6 for the combined NS and P5

PM’s (note parameter ranges in Fig. 8 are consistent

with the ranges listed in Table 4 for run2). Although a

number of parameters are sensitive across their

individual ranges, the bi-variate plots of parameter

interactions show that few correlation structures are

clearly identified, especially for parameter inter-

actions between LU’s. This point is confirmed by

the strength of the correlation co-efficients, where

only Du1 and its relationship to SZM and ln (T0) for

both LU’s have co-efficients above ^0.25. More

complex, non-linear and multi-dimensional structures

may well exist, and will be reflected in the parameter

sets that give behavioural PM’s.

The behavioural simulations for all PM’s identified

in Table 5 and Fig. 8 were then used to determine the

upper and lower possibility limits for the discharge,

NS 7wt depths and P5 7wt depths, these results are

presented in Fig. 9 (note that discharge is also plotted

in log units in Fig. 9B). The results show that although

the range of simulations generally envelop (or are

within the range of) the different observations, this is

not the case for all time steps, and for some periods

there are significant departures. For discharge the

results are encouraging, even when shown as log

transformed flows (Fig. 9b.). Periods of rapid
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Fig. 8. Dotty plots and histograms of behavioural parameter distributions from run2 for both the VBLU and the HSLU for parameter sets that were

classed as behavioural for all three performance measures listed in Table 3. The main matrix of dotty plots shows the correlation between pairs

of parameters within the same LU and between the HSLU and VBLU LU’s (the greyed area). Each histogram shows the distribution of

behavioural parameters within each parameter range (note the range limits are shown for the run1 limits).
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fluctuations from a general recession form are likely

to reflect observed data uncertainties not yet

accounted for.

The P5 simulations are within the range of the 7wt

uncertainty limits for most of the study period. The

exception to this is the period before the 29th October

storm event where the distribution of simulated 7wt

depths are deeper than those of the observed. This

period is preceded by a considerable recession period

(for Maimai) that may suggest even moderate wetting

up sequences are not well represented in the model

dynamics. Non-linearity in catchment response can be

highlighted by the relationship between peak dis-

charges and the maximum 7wt rise at the P5 site. A

consistent pattern is not apparent, where considerable

differences in discharge peaks produce similar rises in

Fig. 9. GLUE Discharge, NS 7wt and P5 7wt updated behavioural possibility bounds for (A) Discharge, (B) ln (Discharge), (C) P5 7wt and

(D) NS 7wt simulations.
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observed 7wt depths, in some cases smaller discharge

peaks result in the highest 7wt rises.

The NS simulations show the most extensive

departures from the range of 7wt observations,

primarily during the recession period previously

mentioned. This rapid increase in the observed 7wt

depths (that seems to begin to be replicated at the end

of the NS observations) may be systematic of local

phenomena such as non-linearity in the storage-

discharge relationship with the different soil horizons.

However, this could also be the result of a breakdown

in the relationship between the 2ve matric potentials

and height above 7wt at the NS site. Certainly

McDonnell (1990) reported a bedrock depth of

0.5 m at the NS pit face, however, this local depth is

highly variable (as noted by McDonnell, 1990) as

identified by the 0.78 m tensiometer placement in

Nest 1 (see Fig. 1(c)). Departures occur in the NS

simulations during periods where þve matric

potential readings are observed, which suggest the

rapidly increasing 7wt depths have some validity.

Finally the characteristics in the NS and P5

simulations relate well to the variability in the

parameter distributions for these LU’s. For the HSLU

lower SZM and higher Du1 parameter distributions

reflect the steeper and deeper P5 7wt recession

characteristics. Previously Freer (1998), using the

original form of TOPMODEL, identified these

controlling parameters as the reason why the model

was unable to simulate the 7wt responses at both sites

using homogeneously applied catchment scale

parameters.

4.3. Constraining model responses and the efficiency

of sampling

For the different behavioural parameter sets

identified in Table 5, Fig. 10 shows the distribution

Fig. 10. Distributions of summary model responses for behavioural simulations using different PM’s or combinations of PM’s listed in Table 4.

An outlier is a value that is more than 1.5 times the inter-quartile range away from the top or bottom of the box.
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of a number of summary model responses calculated

from each simulation run. Fig. 10 shows that the range

of model behaviour can vary considerably between

the different behavioural parameter sets (i.e. peak

discharge). In nearly all cases (apart from Sum

Discharge Fig. 10a where limits for this measure are

generally consistent for all PM’s) simulations con-

ditioned using all the PM’s show the smallest range of

model behaviours. Treated individually, the P5 PM

constrains the model responses most; that this also

occurs for the range of Peak Discharge responses is

somewhat surprising. Perhaps this is indicative of the

discriminatory power of the R2 measure, the strength

of which has been questioned in a number of recent

studies (i.e. Gupta et al., 1998; Legates and McCabe,

1999; Freer et al., 2003). The average 7wt depth

ranges for the P5 and NS sites (Fig. 10e and f) identify

why only a small proportion of simulations that are

behavioural for one site are also behavioural for the

other. The distributions of these average 7wt depths

have very little overlap and must reflect a general

inability to simulate the 7wt observations to an

acceptable level.

Distributions of model responses for the NS PM,

coupled with the lack of sensitivity in parameter

distributions for the same PM shown in Fig. 8, suggest

this PM has the least discriminatory power. This leads

to output model responses that seem uncharacteristic

of catchment behaviour (i.e. the high peak discharges

and maximum saturated areas shown in Fig. 10b and

c). Partly this is a product of the information content

in the fuzzy NS 7wt observations, i.e. generally wider

limits and lower amplitudes of responses compared to

the P5 data, but also this reflects the general

insensitivity of this LU described in Section 4.1.

4.4. Can we improve the model structure

and parameter representation?

The simulation results thus far presented have

resulted in good simulations of the Maimai catchment

discharge and 7wt responses. Where this has not been

the case (i.e. the deeper 7wt recessions at the NS site)

further data collection would be required to confirm

the potential for variability at the model prediction

scale. What is not clear from these results is whether

additional data sets (i.e. more 7wt sites or the use of

tracer data) would still maintain a compatible set of

parameter estimates or lead to the rejection of all

model simulations. Would each new observation site

require a new set of parameter distributions and/or

changes to the basic model structure, similar to that

reported by Lamb et al. (1998)? An important

question for modellers in this regard is how

approximate can a model be and still retain an

element of realism in predicting quantities and fluxes

of interest. Even if the general structure of dynamic

TOPMODEL is a reasonable approximation for the

hydrological response at Maimai, model parameters

are more heterogeneous in space than our definition of

two LU’s have characterised. The use of internal state

data is desirable, but given the necessarily limited and

local nature of the internal state data, would the

predictions elsewhere in the catchment be strongly

biased by this form of conditioning. Certainly the

information pertaining to the characterisation of

hydrological responses at Maimai used in this study

are still limited. This is important as the effective

gridscale uncertainties in the 7wt responses for both

the NS and P5 sites may well be greater than those

currently identified. Given that 7wt was sampled at

nine and 11 locations in the P5 and NS sites,

respectively, demonstrating significant variation

across the gridcell, it would be reasonable to suppose

that this sample reflects only part of the range actually

present across the gridcell. A case therefore could be

made for widening the fuzzy limits beyond the

observed extreme points. We may, therefore, still be

biasing our range of simulated behaviour due to

poorly defined observational uncertainties. Perhaps

what is more likely if additional observations were

available is that each new site that is added to the

constraining information (in this case 7wt infor-

mation) will have characteristics that are in some

way unique (Beven, 2000). Small to potentially large

variations in local parameter distributions may be

required to simulate such information. Observations

from the NS and P5 sites clearly show that the

subsurface dynamics are different, the sites are clearly

drawn from topographically distinct regions of the

catchment, and that these differences have been

reflected in the behavioural parameter distributions

for the two LU’s.

The general hydrological regime at Maimai lends

itself to the primary assumptions embedded in the

dynamic TOPMODEL framework. However,
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the perceptual model of the subsurface flow processes

at Maimai includes mechanisms that are not explicitly

accounted for in the model structure, i.e. horizontal

preferential macropore flowpaths, vertical bypassing

to depth, variable porosity values in the organic and

mineral soil horizons (see Mosley, 1979; McDonnell,

1990; McGlynn et al., 2002). With this in mind our

modelling results are surprisingly good for the 7wt

dynamics. That parameter estimates and model

responses seem to make physical sense with observa-

tional data from Maimai is also encouraging. For

example Pearce et al. (1986) suggest maximum

saturated areas at Maimai are in the region of 4–

7%, comparing well with the results presented in Fig.

10c for the simulations constrained by all the PM’s.

However, insensitivity in many parameters and a

lack of interaction between parameters suggests the

conceptual framework of the model for Maimai

catchment could be improved, if only to reduce the

redundancy of certain parameters. Would it be

possible with increased information to identify for

the local place (i.e. a LU) a subset of parameters

that characterises the uniqueness of that place? In

this case a combination of SZM, ln (T0) and Du1

would seem appropriate for characterising the 7wt

dynamics, thereby reducing the total number of

parameters that need to be uniquely defined for

each LU. Or would new subsets of parameters and

model structure components be required for the

inclusion of each new place and/or each new type

of observed data?

5. Conclusions

This paper presents an approach to assessing the

internal accuracy of dynamic TOPMODEL, recog-

nising that internal state data available to the

modeller are inherently uncertain. The model was

applied to the Maimai M8 catchment in New

Zealand, and was refined by using two topographi-

cally-distinct LU’s (‘Hillslope’ and ‘Valley Bot-

tom’) with separate parameterisations. For each

location, a nest of tensiometers located within an

area more commensurate with the model gridscale

provided a distribution of matric potentials, which

were then converted to water table depth. These

depths were used together with rainfall–runoff data

to constrain the model using the Generalised

likelihood uncertainty estimation methodology.

The use of localised data to assess model

performance presents particular problems to the

modeller. Unlike aggregated components such as

river discharge, water table responses more strongly

reflect localised and smaller-scale characteristics of

catchment processes, and this is clearly demonstrated

in the variability shown in the tensiometer readings

within the area of one gridcell. Although tensiometers

were positioned to avoid cracks and voids in the soils

where these were visibly identifiable, the effects of

heterogeneity of soil characteristics and flow path-

ways, such as macropores and soil structure, cannot be

avoided. When these locally conditioned data are used

to constrain the model, the model structure and

parameterisation may then be biased towards these

local structures which may not be the ‘best’

representation of the average response of the catch-

ment, or indeed at a scale comparable to the model

gridscale, this being the smallest spatial scale of

hydrological process representation in the model. As

increasing numbers of these local criteria are

enforced, the model will be unable to incorporate

the complexity of local observations and the danger is

that all simulations are rejected as non-behavioural or

that increasing numbers of local parameters must be

used.

In an attempt to respond to these problems, fuzzy

performance measures of 7wt predictions were used.

These allow the modeller to include knowledge of

errors in the internal state data presented and are not

so constrained by the need for a particular error

structure throughout the data series. The authors wish

to note that the variability of the tensiometer readings

in time and space are clearly not the only source of

observed data uncertainty driving our model simu-

lations. Similar techniques could also be applied to the

rainfall, evaporation and discharge observations.

In this study a trapezoidal form of fuzzy measure

was used to incorporate knowledge of the distribution

of water table depths at the two test sites. However,

despite the use of fuzzy measures to relax the

assumptions of these criteria, the retention rate for

parameter sets picked using the more efficient

constrained sampling ranges in run2 dropped from

84.69% (discharge only) to 0.26% when using all

three performance measures. This sparseness of
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behavioural parameter sets suggests both a complex

structure within the parameter space, and individual-

ity of water table depths internally to the catchment.

Intuition suggests that the NS water table data should

be less location dependent and more representative of

the overall 7wt dynamics of the catchment than the

P5data. The NS site integrates a greater catchment

drainage area and therefore proportionally this site is

more likely to be representative of the overall

catchment dynamics that characterise streamflow

response. This was borne out by the higher sampling

efficiency when using internal data only from the

NSsite as oppose to only the P5site.

This study has demonstrated that when using

dynamic TOPMODEL to make predictions about

internal catchment dynamics, it is not sufficient to

condition the model using aggregate performance data

such as discharge. The uniqueness of place demon-

strated at and within each gridcell area is not reflected

in such integrated measures; and therefore internal

state data are required to enable model calibration if

the model is to provide a more accurate representation

of the catchment processes (see also Seibert and

McDonnell, 2002). Such evaluations will become

ever more pertinent as internal state data become

more readily available through improved measure-

ment and remote-sensing techniques.

The use of fuzzy measures for evaluating hydro-

logical models is a powerful and flexible tool in

situations where there is no or incomplete knowledge

of the error structure and local variability of the

phenomenon. The exact form of the measure can be

designed to reflect uncertainties particular to the

modelling situation. Equally, this very adaptability

means that consistent, global rules for function

definition cannot be specified; instead the user must

be clear as to the motivation that underlies the chosen

measure, as was the aim in this paper. The challenge

will be to develop methods that are both realistic and

flexible about the nature of such errors but still

maintain a sound scientific justification and/or

evaluation of the error terms.
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