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[1] A priori determined model structures are common in catchment rainfall-runoff
modeling. While this has resulted in many ready-to-use modeling tools, there are several
shortcomings of a one-size-fits-all model structure. The uniqueness of catchments with
respect to their hydrological behavior and the need to adapt model complexity to data
availability challenge this status quo. We present a flexible approach to model
development where the model structure is adapted progressively based on catchment
characteristics and the data described by the experimentalist. We demonstrate this
approach with the Maimai catchment in New Zealand, a location with a large availability
of data, including stream discharge, groundwater levels, and stream isotope measurements.
Different types of data are introduced progressively, and the architecture of the model is
adjusted in a stepwise fashion to better describe the processes suggested by the new
data sources. The revised models are developed in a way to strike a balance between
model complexity and data availability, by keeping models as simple as possible, but
complex enough to explain the dynamics of the data. Our work suggests that (1) discharge
data provides information on the dynamics of storage (represented by the ‘‘free’’ water in
the reservoirs) subject to pressure wave propagation generated by rainfall into the
catchment, (2) groundwater data provides information on thresholds and on the
contribution of different portions of the catchment to stream discharge, and (3) isotope
data provides information on particle transport and mixing of the rainfall with the storage
present in the catchment. Moreover, while groundwater data appear to be correlated with
discharge data, and only a marginal improvement could be obtained adding this
information to the model development process, isotope data appear to provide an
orthogonal view on catchment behavior. This result contributes to understanding the value
of data for modeling, which may serve as a guidance in the process of gauging ungauged
catchments.
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1. Introduction

[2] The problem of evaluating a model with respect to its
ability to reproduce multiple criteria and behavior of a real
system is a major focus in hydrology today [Duan, 2003].
The current view on model evaluation establishes that a
proper model application has to be supported by the
following requirements [Wagener, 2003; Gupta et al.,
2005]: (1) the model must be able to reproduce with
accuracy and precision the observed system response, (2)
model parameters must be well identifiable given the
information extracted by the available data, and (3) the
model must be a realistic representation of the system, that
is, it should be consistent with our understanding of reality.

These requirements summarize findings of previous re-
search, which revealed issues associated with parameter
identifiability [e.g., Duan et al., 1992; Beven and Binley,
1992], measure of information [e.g., Gupta et al., 1998] and
model realism [e.g., Seibert and McDonnell, 2002].
[3] Despite these axioms, the dominant practice in con-

ceptual modeling concerns the application of a priori
determined model structures. This one-size-fits-all approach
does not help with the fulfillment of the requirements for a
proper model application. In fact, there is little chance that a
model developed for specific climatic, geologic or hydro-
logic conditions will represent the hydrological processes
realistically and suitably in different environments [Beven,
2000b]. Moreover, it is unlikely that the model’s complexity
reflects a proper balance between parameter identifiability
and the model’s ability to accurately reproduce the observed
system response [Wagener et al., 2001]. These consider-
ations have motivated the development of alternative
approaches to hydrological modeling. These include the
dominant process concept [Grayson and Blöschl, 2000], the
‘‘top-down’’ or ‘‘downward’’ approach, originally intro-
duced by Klemes [1983] and reformulated by Sivapalan et
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al. [2003], the databased mechanistic approach [Young and
Lees, 1993; Young, 2003], the development of flexible
modeling frameworks [Wagener et al., 2001] and the
balanced qualitative-quantitative approach [Weiler and
McDonnell, 2007]. These approaches favor the develop-
ment of models that strike a balance between model
complexity and data availability, adapting to the require-
ments of specific applications.
[4] While much progress has been made in changing the

culture of rainfall-runoff modeling, there are still several
issues that need to be addressed in order to meet the above
mentioned requirements. In the process of conceptual model
building, there is in fact little guidance on what dominant
model components to include in order to provide a physi-
cally meaningful description of a given catchment. Another
important aspect concerns the data collection process in
relation to modeling. Issues related to the design of hydro-
logic data networks, and to the value of the resulting
information for modeling have long been discussed [Moss,
1979a, 1979b; Langbein, 1979]. However, at present there
is still little guidance for the experimentalist on what to
measure, in what order and why, with a view to modeling.
As a result, often only a small part of the collected
information is used in the modeling process, affecting the
quality and level of detail of catchment process representa-
tion. These things cloud model realism and hamper under-
standing of catchment behavior.
[5] This paper presents a new iterative approach in the

framework of ‘‘scientific investigation’’, which is a learning
process where different aspects of a system are progres-
sively illuminated as the study proceeds [Box and Tiao,
1973]. This approach combines elements of the ‘‘top-
down’’ philosophy, which consists of deriving catchment
internal behavior through an analysis of its response. In line
with this philosophy, we start with a simple model structure
to reproduce the system response and then progressively
refine it based on its shortcomings [Jothityangkoon et al.,
2001; Son and Sivapalan, 2007]. The analysis of the
observed signal and the interpretation of its physical mean-
ing is performed through a discussion between modeler and
experimentalist [e.g., Seibert and McDonnell, 2002]. This
interaction favors the formulation of realistic hypotheses on

catchment behavior. The resulting model can be considered
a posteriori determined, in the sense that additional hypoth-
eses on the catchment behavior are progressively incorpo-
rated based on the model’s failures.
[6] The case study focuses on an application on the

Maimai catchment in New Zealand. We use this location
to develop a proof-of-concept model structure by introduc-
ing progressively different forms of data: first discharge,
then groundwater dynamics, and finally stream isotope data.
The final model can be considered as a la carte, being
necessarily related to the specific characteristics of the
selected location. While the developed model is of limited
utility as it is related to a specific area, there are elements of
this study of more general significance. These are the
contribution of our approach to the traditional modeling
practice, and our results on the value of complementary data
for process understanding. These results are particularly
important for the research on ungauged catchments, as they
provide general indications on how different types of
measurement can contribute to an improved understanding
of catchment behavior.

2. Study Area Description

[7] The catchment used for this study is part of the
Maimai study area, a set of research catchments in the
South Island of New Zealand. These catchments have been
the subject of intensive research since 1974 (for review see
McGlynn et al. [2002]). These study catchments are well
suited for this research because of: (1) the availability of
complementary data at fine timescales and (2) the strong
process understanding already developed at this site which
favors the data interpretation in the model development
process.
[8] We use data from the M8 catchment, a small forested

headwater catchment that drains an area of 3.8 ha (Figure 1)
(data available at www.cof.orst.edu/cof/fe/watershd/Docu-
ments/Maimai_Data_Note/Maimai.htm). A detailed de-
scription of its hydrological characteristics is given by
Pearce et al. [1986]. The topography of the area is charac-
terized by steep (average 34!) short slopes, with a local
relief of about 100 m. The channels are deeply incised, so
that the area of near-channel valley-bottom is highly re-
stricted. Soil depth averages at 60 cm, with larger deeper
soils in hillslope hollows (topographic convergent zones)
and shallower depths near the catchment divide and in the
proximity of the stream. Soils are underlain by a firmly
compacted and effectively impermeable [Mosley, 1979]
cemented conglomerate bedrock, which promotes the lateral
movement of water in the soil layer above. The overstory
vegetation consists of replanted Radiata pine. Annual aver-
age rainfall is 2600 mm/a, which produces an average
annual discharge of 1550 mm/a, with little seasonal varia-
tion. As a result of the humid and wet environment, in
conjunction with the catchment characteristics, soil water
content rarely declines below 10% of saturation for most of
the hydrologic year [Mosley, 1979].
[9] The Maimai catchments are among the most hydro-

logically responsive forested headwater catchments docu-
mented in the literature [Sklash et al., 1986]. Soil infiltration
capacities exceed by several orders of magnitude typical
rainfall rates, hence subsurface flow dominates the produc-
tion of storm runoff [Pearce et al., 1986]. Analysis of

Figure 1. Representation of the Maimai M8 catchment.
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naturally occurring stable isotope concentrations by Pearce
et al. [1986] found a fairly stable isotope signal in the
stream during rainfall events. From this and other studies it
was determined that the contribution of event water to storm
runoff was usually less than 25%.
[10] The data used for this study cover a four month

period from the beginning of September to the end of
December 1987. The data include rainfall, discharge (mea-
sured at a 90! V notch), potential evaporation (Ep), ground-
water levels, and deuterium measurements in the rainfall
and at the catchment outlet. The data timestep used for this
study is 20 min. Potential evaporation data were trans-
formed from daily amounts to hourly, using a sine curve
distribution between the hours of 6:00 and 18:00 [Vaché and
McDonnell, 2006]. Groundwater data were available at two
locations (Figure 1), one near the stream, and the other at an
intermediate location between the catchment divide and the
stream (see Freer et al. [2004], for a description of these
groundwater data). Isotope data covered the whole rainfall
period, while discharge isotope data were available only for
selected events. A detailed description of the isotope col-
lection approach is given by McDonnell et al. [1991].

3. Methodology

3.1. General Framework

[11] Our general methodological framework stems from
Box and Tiao [1973], where they noted that scientific
investigation is a learning process where various aspects
of a system are illuminated as the study proceeds. It consists
of an iterative process where a tentative model suggests an
experiment, and the experiment leads to a modified model.
The main aspects that determine the success of this approach
are (1) the ‘‘power’’ of model diagnosis in demonstrating to
what degree the model is representative of the real system
behavior [Wagener and Gupta, 2005], (2) the efficiency of
the experimental design with respect to the modeling pur-
poses, and (3) the value of the inference that can be drawn
from the comparison between model and data. This process
relies both on the value of established theories which form the
‘‘Science’’ foundation of the analysis, and on the creativity,
intuition and knowledge of the researcher who applies his or
her understanding to the model and experimental work. This
represents the ‘‘Art’’ aspect of modeling [Fenicia et al.,
2008].
[12] Several aspects of this approach are not new to the

hydrologic culture. However, the full power of scientific
investigation has seldom been expressed in hydrological
modeling. In fact, while it has often been reported that
conceptual model development should consider a continu-
ous revision of model assumptions [e.g., Beven, 2000a],
applications that implement this view are few [Vaché and
McDonnell, 2006]. As a result, model development has
rarely been considered in connection to experimental design
in a learning process.
[13] The methodology adopted in this paper outlines the

various steps of the iterative model development process.
We start with a simple model of catchment behavior, which
is subsequently tested against observations. We then refine
the model structure through an analysis of its shortcomings.
In the model development process, we introduce progres-
sively different types of data, at first ‘‘hard’’ forms of data

(e.g., discharge), and then ‘‘softer’’ (more ad hoc, less
continuous, and often requiring some additional interpreta-
tion) forms of data (e.g., groundwater measurements and
stream water stable isotope composition). The various types
of data motivate additional model complexity, demonstrat-
ing their contribution to process understanding. We name
the evolving model SoftModel, to underline that it is a
flexible tool that helps us to explain what we observe. The
analysis used for model diagnosis is the multi-objective
framework proposed by Gupta et al. [1998]. This frame-
work allows the simultaneous evaluation of model perfor-
mance with respect to different performance indicators. In
the present case, we evaluate the agreement of each type of
data with model output through a single statistical summary.
The model evaluation is therefore performed in a three
dimensional objective space.
[14] The type of inference that can be drawn from the

comparison between model and data is a crucial aspect of
the methodology. In this case the model is developed
through an exchange between modeler and experimentalist.
The experimentalist shows the modeler which way to go
when more complexity is required, and the modeler shows
the experimentalist which constraints the model requires
and where additional data are needed. This dialog benefits
both the modeler and the experimentalist.
[15] The methodology presented here builds upon ideas

that were introduced recently on model rejection [Vaché
and McDonnell, 2006], virtual experiments [Weiler and
McDonnell, 2004], the value of soft data and the modeler-
experimentalist dialog [Seibert and McDonnell, 2002]. The
idea of moving from a simpler to a more complex model
structure based on its shortcomings in reproducing catchment
behavior is part of the top-down philosophy [Sivapalan and
Young, 2005]. This philosophy has been utilized to develop
models of increasing complexity considering the additional
constraints posed by data with decreasing timescale [e.g.,
Jothityangkoon et al., 2001] or by different types of data
[Son and Sivapalan, 2007]. In this work, similarly to Son
and Sivapalan [2007], we identify additional complexity
introducing progressively different types of data.
[16] In the framework of the top down approach, model-

ing starts with a simple conceptualization [Sivapalan and
Young, 2005]. In the present case we start with a single
linear reservoir, arguably the simplest way of reproducing
the hydrological behavior of a catchment [O’Kane, 2006].
The linear reservoir is common for modeling hydrograph
recessions [Fenicia et al., 2006] and has been found useful
for simulating hydrograph response at coarse temporal
scales [Jothityangkoon et al., 2001]. We use this model
because it contains minimum assumptions on catchment
behavior, which facilitates the model revision process.

3.2. Model Evaluation

3.2.1. Definition of Objectives
[17] The problem of representing the information

contained in the data is a topic of active discussion [Gupta
et al., 2008]. Leaving aside the question of how many
independent pieces of information can be extracted from a
single time series, we evaluated model performance with
a single statistical summary for each of the time series used.
The selection ofmodel performancemeasures was performed
subjectively, based on considerations of the constraints
that data are supposed to impose on model behavior. The
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assessment of model performance was also complemented
by visual inspection of the simulated and observed time
series.
[18] The accuracy of simulation with respect to the

observed discharge was evaluated with the objective func-
tion Fq, expressed as:

Fq ¼ 1" INS ¼

X

n

k¼1

Qo;k " Qs;k

! "2

X

n

k¼1

Qo;k " Qo

! "2
ð1Þ

where Fq transforms the Nash and Sutcliffe Index, INS, into
a minimization objective, and takes a value of zero for a
perfect fit, n is the number of time steps where discharge is
evaluated, Q is discharge, the subscripts o and s stand for
observed and simulated respectively, overbar indicates an
average over the observation period and the index k
indicates the specific time step. This performance measure
was selected mainly for the purpose of communication, as it
is often used in modeling applications.
[19] Model accuracy with respect to the simulation of

groundwater was evaluated through the following objective
function, related to the correlation coefficient R:

Fp
w ¼ 1" R ¼ 1"

P

n
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o

# $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Sps;k " S
p

s
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k¼1
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o;k "W

p

o

# $2
s ð2Þ

where W represents the groundwater level, S represents the
storage level in a model compartment, p represents a certain
place or location in the catchment, n is the number of
groundwater measurements, and the definition of the other
symbols is the same as in equation (1). Groundwater
measurements are only available at few locations, and
therefore hardly comparable with model variables, repre-
senting averages over much larger areas [Beven, 2001].
However, as in the work of Seibert and McDonnell [2002],
this objective function was selected to force the model to
match the groundwater dynamics, rather than the exact
water levels.
[20] In order to evaluate model performance with respect

to the stream water deuterium concentration, the following
objective function was constructed:

Fi ¼

P

n

k¼1

ei;k
! "2

P

n

k¼1

dDo;k " dDo

! "2
ð3Þ

ei;k¼
abs dDo;k"dDs;k

! "

"emax; if abs dDo;k " dDs;k

! "

"emax

! "

>0
0; if abs dDo;k " dDs;k

! "

" emax

! "

< 0

&

ð4Þ

Where, D is deuterium, n is the total number of isotope
measurements, e is the model error expressed by
equation (4), emax = 1% is the standard deviation associated

to deuterium measurements, and dD is the relative isotope
content of a sample in comparison with the ‘‘Vienna
Standard Mean Ocean Water’’ or VSMOW [e.g., Kendall
and Caldwell, 1998] represented in parts per thousand (%).
The definition of other symbols is the same as in equation (1).
The Fi objective function was constructed to consider as
equally good isotope simulations that differ from observa-
tions less than emax. We emphasize that instead of referring to
derived parameters of measured isotopes, such as mean
residence time, or fraction of new and old water, which have
been adopted as additional criteria for model evaluation [e.g.,
Vaché and McDonnell, 2006; Son and Sivapalan, 2007], in
this case we used the raw isotope data themselves. As mean
residence time and new water old water fractions are derived
from the isotope signal with very simplistic models, the use of
those indices to model evaluation is in principle more
uncertain than the direct use of the observations.
3.2.2. Model Calibration
[21] Model calibration was performed both in a single

and in a multi-objective framework, depending on the
number of objectives to optimize in the different stages of
model development. For single objective optimization the
parameter search was performed using the PSO (Particle
Swarm Optimization) algorithm [Birge, 2003]. The PSO
algorithm is a population-based search algorithm based on
the simulation of the social behavior of birds within a flock.
It is stochastic in nature much like Genetic Algorithms
(GA). Its main elements are the maximum number of
iterations NPSO, the population size MPSO, which defines
the number of model runs at each iteration, the maximum
number of iterations to reach consensus that optimization
has occurred KPSO, and an error threshold EPSO. Optimiza-
tion stops either if NPSO has been reached, or when after
MPSO function evaluations the objective function varies less
than EPSO. Other parameters were kept constant as sug-
gested by default [Birge, 2003].
[22] For multi-objective optimization we used the NSGA

II (Nondominated Sorting Genetic Algorithm, Deb et al.
[2002]). The NSGA II is a multi objective GA which, with
respect to traditional GAs, has the main advantage of not
requiring parameter tuning. For the NSGA II the main
elements to get the function running are the number of
iterations NGA, and the population size which defines the
number of model runs at each generation MGA. The total
number of function evaluations is therefore NGA times MGA.
Both algorithms (which can be downloaded at math-
works.com) represent state of art in optimization theory
[Engelbrecht, 2005; Deb et al., 2002].
[23] As complexity in the model structure is introduced in

correspondence of model failures, model parameters have
often a specific role in the simulation of catchment re-
sponse. In order to take advantage of this aspect in the
calibration process, we made use of the Stepped Calibration
Approach [SCA, Fenicia et al., 2007]. This approach
associates groups of model parameters to related calibration
objectives, and calibrates each group of parameters with
respect to each calibration objective in separate stages. The
aim of this approach is to ensure that model components
perform the tasks for which they are intended, while not
compensating for other processes that are poorly repre-
sented. Moreover, the approach narrows the parameter

4 of 13

W06419 FENICIA ET AL.: LEARNING FROM MODEL IMPROVEMENT W06419



space, and improves the conditions for efficient parameter
sampling.
3.2.3. Sensitivity Analysis
[24] An evaluation of parameter sensitivity is important to

assess to what extent parameter values are constrained by
the data. A lack of sensitivity is a symptom of model over-
parameterization, and reduces confidence in the hypotheses
describing catchment processes. Approaches to determine
parameter sensitivity evaluate how changes in model param-
eters affect model predictions. Among the different existing
approaches [Tang et al., 2007], perhaps the most widely
used is Regional Sensitivity Analysis (RSA) [Hornberger
and Spear, 1981], which has been applied in many variants
in different applications [e.g., Freer et al., 1996; Wagener et
al., 2003].
[25] In this study, we use elements of the RSA, with the

difference that while the RSA is based on uniform sampling
of the parameter space, we use the parameter samples
generated during model calibration. Hence as the optimiza-
tion algorithms converge toward the regions of the param-
eter space that performs best, the analysis is used to express
the location and extent of these areas within the feasible
parameter space. The spread of the solutions where the
sampling concentrates is taken as an indication of parameter
sensitivity.
[26] The analysis is applied to the model structure that

represents the final stage in the model development process.
Like in the RSA, we adopt a partitioning of the parameter
space in behavioral (good) and nonbehavioral (bad) solu-
tions, based on the selection of arbitrary thresholds of
acceptance. The analysis is performed in a multiobjective
way and therefore thresholds were established for each of
the three objective functions used during calibration.
[27] For each behavioral parameter set and each objective

function, the difference between the acceptance threshold
and the objective function value is used to construct a
performance measure expressing better performance with
higher values [e.g., Wagener et al., 2003]. The perfor-
mance measures corresponding to each objective function
are then rescaled to produce a cumulative sum of unity. The
cumulative performance C over the parameter ranges is then
used to characterize parameter sensitivity. The total extent
of the line representing the cumulative performance indi-
cates the total range where the parameter is identifiable; a
straight line indicates poor identifiability within the range,

whereas deviations from a straight line indicate regions of
identifiability. Higher gradients indicate a grouping of
behavioral solutions, while lower gradients indicate lack
of behavioral solutions.

4. Results

4.1. Model Development

4.1.1. Discharge Data; Development of SoftModelq
[28] The modeling process that let to development of

SoftModelq (Figure 2) started with a single linear reservoir
(Q = S/k, where k is the reservoir timescale, and S the
reservoir storage), widely acknowledged as the starting
point for all conceptual rainfall-runoff models [Eriksson,
1971]. Actual evaporation was assumed to be equal to the
potential evaporation, as the catchment is characterized by
little moisture stress and soil moisture remains near satura-
tion for most of the year (the yearly water balance of the
catchment also confirms that this is a good approximation
[Mosley, 1979]). The single parameter representing the
reservoir timescale was calibrated by minimizing Fq.
[29] A visual examination of the hydrograph made it clear

that the model could not represent the slope of the recession
curve over the full range of observed discharge (Figure 3).
This motivated the first improvement in the model, which
consisted of substituting the linear reservoir for a nonlinear
reservoir (Q = S1+a/k, where a is a nonlinearity parameter).
This modification was preferred over other model options
(e.g., introduction of more reservoirs) because it was the
most parsimonious in terms of parameters introduced. It in
fact resulted in the introduction of only one additional
parameter.
[30] The model modification improved the fit substantially

(Figure 3). However, there was a lag between observed and
simulated time series (where the model produced a peak
discharge simultaneously with the peak of the rainfall) that
we could not correct with the existing model structure. While
several options exist to correct this problem [e.g., the use of a
transfer function as in the HBV model of Bergström, 1995],
we preferred to introduce an additional linear reservoir, in
series with the other reservoir [Nash, 1960]. The selection of
this alternative was motivated by the catchment configura-
tion, characterized by the impermeable bedrock layer that
promotes lateral movement of water both during and between
events. Experimental work at the site has shown this based on

Figure 2. Structure of SoftModelq, SoftModelw1,w2, and SoftModeli.
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3D tensiometer monitoring during events [McDonnell et al.,
1990] and based on isotopic evidence where water ages
clearly in a downslope direction [Stewart and McDonnell,
1991]. We represented this feature in the revised model by
a series of two cascading reservoirs: a linear upper hill-
slope reservoir and a nonlinear lower hillslope reservoir
(Figure 2a). The linear reservoir is representative of the
shallower more uniform soils in the portions of the catch-
ment that are closer to the catchment divide, while the
nonlinear reservoir is representative of the thicker soils of
topographic convergence zones and accounts for a larger
variability of catchment response. The nonlinear reservoir
also captures behaviorally the observed decrease of hydrau-
lic conductivity with depth [Mosley, 1979]. We describe
these simple model decisions by the following equations:

Qu ¼ Su=Ku ð5Þ

Ql ¼ S1þa
l =Kl ð6Þ

Pu ¼ 1" fð ÞP ð7Þ

Pl ¼ P " Pu ð8Þ

Ea;u ¼ 1" fð ÞEp ð9Þ

Ea;l ¼ Ep " Ea;u ð10Þ

where the subscripts u and l refer to the upper and lower
hillslope reservoir, respectively, S (mm) is the reservoir
storage, K (t) is the timescale of the reservoirs, P (mm/t)
stands for precipitation, Ea (mm/t) and Ep (mm/t) are actual
and potential evaporation respectively, and f (") is the
surface fraction of the catchment represented by the lower
hillslope reservoir. This model, which we named Soft-
Modelq, is characterized four parameters: Ku, Kl, f, and a.

[31] This representation of hydrological processes is
simple and not entirely satisfactory for the experimentalist,
who is interested in a more mechanistic description of
hillslope processes. The process knowledge that has been
acquired during the extensive analysis of this catchment
suggests a catchment behavior that is more elaborate than
this simple structure represents. The horizontal subdivision
in two zones (upper hillslope and lower hillslope), and the
lumping of the vertical profile in a single unit represent this
catchment in a very simplified way. Seibert and McDonnell
[2002], for example, divide the hillslope in three zones in
horizontal direction (hillslope, hollow and riparian), and in
two zones in vertical direction (unsaturated and saturated).
The lack of a separate description of interception implicitly
combines this process into the total evaporation, even if
evaporation from water stored on forest canopy accounts for
a fraction of 20–30% of gross rainfall [Pearce et al., 1986;
Savenije, 2004].
[32] However, by looking at the discharge data alone and

at the accuracy obtained by SoftModelq it is difficult to
justify the need for more model complexity (Figure 3).
Indeed, the introduction of additional model components
would add additional degrees of freedom that would not be
supported by the data. The introduction of an interception
reservoir, for example, did not produce significant improve-
ments in the final hydrograph, probably as a result of the
chronically wet conditions which do not enhance the
threshold behavior associated to this process. This however,
does not mean that the model definition should not be
different, or that it is not possible to extract more informa-
tion from the discharge data. The model selection process is
closely related to a subjective interpretation of the data,
while it is known that the same type of data can be
employed in more ways. In this case, the satisfactory visual
examination of model prediction (Figure 3), the short length
of the time series used, and the priority of focusing on
different types of information, did not motivate further
model development based on discharge time series alone.
4.1.2. Groundwater Data; Development of SoftModelw
[33] Groundwater levels were available from two loca-

tions in the catchment, one located in a hollow, close to the
catchment divide, and another located near the stream. In

Figure 3. Optimum performance of one linear reservoir, one nonlinear reservoir, and SoftModelq with
respect to discharge simulation, on a subset of the calibration record.
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order to evaluate model performances at both locations, the
measurements from the upper and lower hillslope locations
were compared with the levels in the upper and lower
reservoir respectively, using a combined objective function:

Fw ¼ 1

2
Fu
w þ Fl

w

! "

ð11Þ

The introduction of an additional criterion puts the model
evaluation in a multiobjective environment [Gupta et al.,
1998]. The evaluation of SoftModelq with respect to both Fq

and Fw shows a tradeoff between these objectives, which is
described by the Pareto-optimal front (shown later in the
paper). In order to evaluate the performance of SoftModelq
with respect to groundwater visually, the model selected is
the one that corresponds to a INS of 0.9, where the
performance with respect to Fw seems to level out. This
model is shown in Figure 4. Examination of this graph
shows that the overall catchment dynamics are more or less
matched, but that storage fluctuations are poorly represented
in the upper hillslope groundwater. This may be because the
lower limit of reservoir Su is the zero level of the reservoir.
In the lower hillslope reservoir, on the other hand, it appears
that the dynamics associated with lower storage levels are
better simulated than those associated with higher levels.
The lower reservoir apparently has an upper threshold not
represented by the model.
[34] These limitations can be used to question the validity

of SoftModelq, and to develop additional hypotheses of
catchment behavior to then be incorporated into the model.
A first modification of SoftModelq was to allow the reser-
voir level to go below the threshold of runoff production.
This means that below this threshold, additional storage is
considered that can be drained by evaporation. This choice
is motivated by the consideration that the initiation of runoff
in a catchment is a threshold process that occurs when
catchment storage rises above a certain level (i.e., the fill
and spill hypothesis of Tromp-van Meerveld and McDonnell

[2006]). This modification should overcome the limitations
displayed in reproducing upper hillslope groundwater
dynamics.
[35] The resulting model, named SoftModelw1 (see

Figure 2b), contains one additional parameter with respect
to SoftModelq. This model is defined by equations (5),
(6), (7), (8) and by the following equations:

Ea;u ¼
1" fð ÞEp; if Su & 0
1" fð ÞEpe

CeSu ; if Su < 0

&

ð12Þ

Ea;l ¼
fEp ; if Sl & 0
fECeSu

p ; if Sl < 0

&

ð13Þ

where Ce (") is a parameter that accounts for the reduction
of evaporation (in fact in this case it is entirely transpiration)
if groundwater levels are below the threshold that activates
the reservoirs. As a result of this hypothesis, there is no
connectivity between the reservoirs if Sl is below zero, and
the reservoirs empty only due to evaporation, as described
by equations (12) and (13). At this stage, the lower limit of
the reservoir level is left undetermined. The performance of
SoftModelw1, characterized by five parameters, is repre-
sented in Figure 5, which demonstrates that model
performance improved in the simulation of the upper
hillslope reservoir.
[36] To overcome the limitations related to the lower

hillslope reservoir, it is proposed that the nonlinear stor-
age-discharge relation is complemented by a nonlinear
distribution of storage over the profile. A nonlinear rela-
tionship between groundwater level and storage for the
lower hillslope was also suggested by Seibert et al. [2003]
who used a similar model at a different location. In this
case, such a relationship is justified by the fact that a
significant decrease of drainable porosity with depth was
observed, which was associated with different character-

Figure 4. Groundwater level simulation of SoftModelq.
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istics of the upper organic soil and lower mineral soil
[Mosley, 1979].
[37] This hypothesis is implemented by introducing a

storage threshold for the lower hillslope reservoir Sl
tr

(mm), and assuming that equal changes of storage above
and below this threshold produce unequal changes of
groundwater levels by a factor Cw("). Cw is a number
lower than unity that represents the ratio between the
drainable porosity in the lower layer and the drainable
porosity in the upper layer. The model that includes this
modification was named SoftModelw2 and is characterized
by six parameters. Its performance is also shown in Figure 5.
Clearly, this modification only affects the simulation of the
water level in the lower reservoir, leaving the simulation of all
other fluxes unaltered.
4.1.3. Isotope Data, Development of SoftModeli
[38] Isotope samples were available for rainfall for all

events and the major discharge events. Because of the
uncertainty in the observed input and output and due to
the discontinuities in the measured output, the states of the
model prior to each event were updated through state
updating. In doing so, the concentration of all model
reservoirs prior to each event was set as the concentration
that was measured in the base flow prior to the event (i.e.,
discharge prior to the rainfall event when this measure was
available, or as the concentration after the event when low
flow conditions were reached if pre-event based was not
available). No relative weighing of model output and
measured output was performed, and full weight was
assigned to the measurements.
[39] The use of state updating avoids that the average of

the modeled fluctuations deviates from that of the measure-
ments, and allows the model to fit better the internal
dynamics of each event, when it has the potential to do
so. The shortcoming is that in updating model states some
information about the processes may be lost. However, it

has to be realized that tracer simulations are generally event
based. In this case, even with state updating, we try to
capture the observed dynamics of the entire observation
period within a single model.
[40] The performance of SoftModelq and that of SoftModelw1

and SoftModelw2 were tested with the hypothesis of ‘‘com-
plete mixing’’, which assumes that the rainfall reaching each
reservoir mixes instantaneously and completely with the
available reservoir storage. At this stage, no additional
parameters were added and the performance Fi was calcu-
lated without recalibrating the model. However, the intro-
duction of the mixing hypothesis required the specification
of a mixing volume. Hence a bottom level of the reservoirs
(Vu (mm) and Vl (mm)) was selected based on the
minimum storage level reached during model calibration
(11 and 22 mm respectively).
[41] The behavior of SoftModelw1 and SoftModelw2 with

respect to isotope simulation was the same, since both
models differed only by the characterization of the ground-
water levels and not by their flows. The performance of the
models is shown in Figure 6. Neither of the two models was
able to match the observed isotope signal adequately.
SoftModelw1,w2, characterized by a larger storage, indeed
improved the simulation of SoftModelq. This suggests that a
better representation of the isotope signal can be obtained
by accounting for even larger mixing volumes [Barnes
and Bonell, 1996]. This hypothesis was implemented in
SoftModeli (represented in Figure 2c). Compared to
SoftModelw2, the model takes into account an additional
storage for each reservoir, of which the volume is identified
by the parameters Uu (mm) and Ul (mm). In order to reduce
the risk of overparameterization, the ratio of the two is kept
constant at a value that is representative for the difference
between the soil thickness of the upper and lower hillslope,
thus reducing the number of free parameters to one (e.g.,Uu).
This approach is consistent with the parameterization proce-

Figure 5. Groundwater level simulation of SoftModelw1, and SoftModelw2. Model accuracy increases at
each model development stage.
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dure outlined by Refsgaard and Storm [1996] who suggest
fixing the spatial patterns in order to reduce the number of
free parameters that need to be adjusted during calibration.
On the basis of the data given by Seibert and McDonnell
[2002], a ratio Ul/Uu of 3 was selected.
[42] This additional storage accounts for the mixing of

rainfall with a catchment storage which is much larger than
what can be determined using discharge or groundwater
data only. It can be identified with the storage in the
unsaturated zone, or with other storages that participate to
the rainfall mixing process but cannot freely drain when
subject to gravity alone. Hence we assume that the storage
is inactive with respect to the ability of the catchment of
producing runoff, and that participates only in the mixing
process. Moreover, we assume that the storage is fixed in
volume, also based on the consideration that moisture state
of the catchment does not vary greatly throughout the year.
As a result, SoftModeli is characterized by the same equa-
tions as SoftModelw2 with respect to flow and groundwater
dynamics, while the rainfall is supposed to mix completely
and instantaneously both in the total volume of the upper
hillslope fraction (i.e., Uu + Su + Vu) and in the total volume
of the lower hillslope fraction (i.e., Ul + Sl + Vl).
[43] The performance of SoftModeli, characterized by

seven parameters, is shown in Figure 6, where it is possible
to observe that the overall simulation with respect to isotope
data is improved significantly. While the M8 catchment is
known to be a well mixed system [Pearce et al., 1986], the
hypothesis of complete mixing is clearly a simplification.
Stewart and McDonnell [1991] show that the age of water
increases downslope and vertically in the profile, and
McDonnell et al. [1991] concludes that between storms
mixing is particularly important. We formulated additional
hypotheses which go beyond complete mixing, but they did
not lead to qualitative improvements in the model perfor-
mance. While they might have important consequences on
the interpretation of the catchment behavior, they go beyond

the philosophy of this work which is to introduce complex-
ity where supported by the data.

4.2. Model Calibration

[44] The model development process favors the connec-
tion of model parameters with specific calibration objec-
tives. In order to take advantage of this aspect, the model
was calibrated through the SCA. The approach consists in
associating groups of parameters with specific objective
functions and in calibrating each group of parameters with
respect to each objective function in separate stages. An
ideal condition for the application of this approach is when
model parameters related to a certain objective function are
uncorrelated to objective functions associated with preced-
ing calibration stages. This allows the calibration of each
group of parameters not to be affected by subsequent
calibration steps [Fenicia et al., 2007]. In the present case,
by looking at model equations, it is possible to observe that
that while all parameters of SoftModelq and SoftModelw1 are
correlated to all objective functions, the parameters intro-
duced in SoftModelw2 (i.e., Sl

tr and Cw) affect only the
simulation of groundwater and therefore do not influence
the simulation of discharge, and the parameter introduced to
allow for isotope simulation (i.e., Uu) in SoftModeli affects
only the simulation of isotope concentration, and not the
simulation of groundwater levels and discharge.
[45] Hence while the parameters associated to SoftModelq

and SoftModelw1 were calibrated with respect to both Fq and
Fw, the additional parameters that characterize SoftModelw2
were calibrated with respect to the single objective Fw, and
the parameter introduced in SoftModeli was calibrated with
respect to the single objective Fi. In the calibration of
SoftModelw2 and SoftModeli, the already calibrated param-
eters were kept at constant values.
[46] The multiobjective optimization of SoftModelq and

SoftModelw1 was performed with the algorithm NSGA II,
with parameters NGA = 200 and MGA = 100. The initial
parameter ranges defining the feasible parameter space are

Figure 6. Simulation of Deuterium concentration of SoftModelq, SoftModelw1,w2, and SoftModeli.
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reported in Table 1. The samples generated by the algorithm
in the objective space are shown in Figure 7, which
demonstrates the tradeoff in performance between Fq and
Fw and the general improvement associated to the model
modification. The performance tradeoff shows that an
increase in performance with respect to Fw is at the expense
of a performance decrease with respect to Fq.
[47] The single-objective calibration stages of SoftMo-

delw2 and SoftModeli, with respect to Fw and Fi respectively
are performed using the PSO algorithm, with parameters
NPSO = 100, MPSO = 24, KPSO = 35 and EPSO = 10"4. The
repetition of these stages for a group of parameter sets (i.e.,
those of SoftModelw1 that perform better than 0.3 for Fq,
0.15 for Fw) gives an indication of the general model
improvement. In Figure 7 we see that SoftModelw2 outper-
forms SoftModelw1 with respect to Fw, while the perfor-
mance of the two models is the same with respect to Fq.
Figure 8 shows the performance of all models in the three-
dimensional objective space. We can see that each improve-
ment causes a shift toward the origin of the axes. Moreover,
the increase in performances between SoftModelw1 and
SoftModelw2 and between SoftModelw2 and SoftModeli is
parallel to the axes Fw and Fi respectively, because the
parameters introduced are correlated to one objective func-
tion only.
[48] The model outcomes shown in previous figures

correspond to selected models from the calibration results.
Specifically, Figure 3, which shows the SoftModelq dis-
charge prediction, corresponds to the model that optimizes
the single objective Fq. Figures 4, 5, and 6, which represent
model performance with respect to groundwater and iso-
topes, correspond to the optimal models associated to a
fixed value of Fq of 0.1 (a INS index of 0.9).

4.3. Parameter Sensitivity

[49] While the focus of this work is specifically on the
contribution of complementary data for model development,
an assessment of parameter identifiability is important to
evaluate to what extent our approach helps constraining
model’s degrees of freedom. Parameter identifiability with
respect to their associated objective functions (i.e., the
objective functions used for their calibration) is expressed
in Figure 9. The performance measures based on which the
cumulative performance C is calculated were determined
from the values of Fq, Fw and Fi, using the respective
acceptance thresholds of 0.15, 0.3, and the maximum of Fi.
The results of the sensitivity analysis are clearly influenced
by the ability of the selected objective functions of enhanc-
ing the role of model parameters in the reproduction of the
observed system behavior. Model parameters have different

effects on the simulation and not all of them may be well
represented by the objective functions used. However,
Figure 9 shows that model parameters are well identifiable.
The initial parameter ranges are reported in Table 1. The
final sensitivity ranges are much narrower than the initial
ones, and lie within one order of magnitude for all param-
eter values, and for most of them within a 10% of their
values. It is interesting to notice that parameter identifi-
ability may change with respect to different objective
functions. As an example, the parameter Kl is better con-
strained by Fw than by Fq. In general, the results of the
analysis support the conclusion that the iterative approach to
model development applied in this study favors the devel-
opment of models with a degree of complexity that is
supported by the data.

5. Discussion

5.1. Adaptive Approach to Model Development

[50] We used information about stream discharge,
groundwater level, and isotope concentration to generate a
model structure that evolves progressively as each new type
of data is introduced. The model incorporates an increasing
number of hypotheses that allow evaluating the contribution
of different sources of data in representing the catchment
behavior. SoftModelq, which characterizes the catchment
description with respect to discharge data alone, represents
the catchment as a series of reservoirs: an upper linear
reservoir, and a lower nonlinear reservoir. The description
of the catchment structure as a series of reservoirs is
motivated by the consideration that the catchment is char-
acterized by an impermeable bedrock layer, which impedes
deep infiltration, promoting lateral movement of water. The
reason why the storage discharge relation is linear in the
upper reservoir and nonlinear in the lower one, is that soils
are shallower and more uniform in the upper part of the
basin than in the lower one, where they cause a larger
variability in runoff response. SoftModelw2, which describes
the catchment behavior with respect to discharge and
groundwater data, involves the additional hypothesis that

Figure 7. Performance of SoftModelq, SoftModelw1 and
SoftModelw2 with respect to discharge (Fq) and groundwater
level simulation (Fw). In model evolution, the performance
Fw improves, while Fq remains at the same level.

Table 1. Initial Parameter Range for Model Calibration

Parameter Units Initial Range

Ku t (20 min) 4–106

a ''' 0.5–4
Kl t (20 min) 4–106

f ''' 0.1–0.9
Ce mm"1 0.001–3
Sl
tr mm 2–50

Cw ''' 10"4–1
Uu mm 80–110
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the reservoir levels can fluctuate below the threshold that
produces runoff. Moreover, the lower reservoir is charac-
terized by a nonlinear relation between storage and water
level, which is motivated by an observed decrease of
drainable porosity with depth. SoftModeli, which describes
the catchment behavior with respect to discharge, ground-

water, and isotope data, is characterized by an additional
storage which accounts for the mixing of rainfall with water
existing in the catchment prior to the event. Such storage is
mostly identifiable with that of the unsaturated zone.
[51] The iterative process of model development allows

associating model parameters with specific calibration

Figure 8. Performance of SoftModelq, SoftModelw1, SoftModelw2 and SoftModeli with respect to
discharge (Fq), groundwater level (Fw) and isotope concentration. Note that the improvements
SoftModelw1 ! SoftModelw2 ! SoftModeli determine orthogonal movements in the objective space.

Figure 9. Identifiability of model parameters toward the related objectives. The timestep t is 20 min.
The performance measures based on which the cumulative performance C is calculated are determined
from the values of Fq, Fw, and Fi using the respective acceptance thresholds of 0.15, 0.3 and the
maximum of Fi.
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objectives. This idea is exploited in the calibration process,
which is performed stepwise. It narrows the number of
parameters for which, at each step, calibration is performed,
and it improves the conditions for an efficient parameter
sampling. Moreover, the fact that model parameters are
associated to specific roles in the reproduction of the system
response, allows a better control on model behavior. The
sensitivity analysis shows that model parameters are gener-
ally well identifiable within relatively narrow ranges. This is
a consequence of the fact that additional hypotheses about
the catchment behavior are introduced only in correspon-
dence of model failure. Hence the number of model
parameters grows only as long as there are aspects of the
system response that are not accurately represented, reducing
the risk of model overparameterization.

5.2. Value of Different Forms of Data

[52] Our adaptive approach to model structure facilitates
the dialog between modeler and experimentalist, and sheds
light on the value of different forms of data in the model
evaluation process. The developed models contain a mini-
mal set of hypotheses to represent the available data. Most
importantly, they stand a high chance of being rejected
when evaluated with additional information [Kirchner,
2006]. This way, the value of additional information in
illuminating new aspects of the catchment behavior
becomes clear. It also demonstrates the value of ‘‘orthogo-
nal’’ data; new, con-redundant measures of catchment
behavior that the model is challenged to represent. Our
work suggests that (1) discharge data provides information
on the dynamics of storage (represented by the ‘‘free’’ water
in the reservoirs) subject to pressure wave propagation
generated by rainfall into the catchment, (2) groundwater
data provides information on thresholds and on the contri-
bution of different portions of the catchment to stream
discharge, and (3) isotope data provides information on
particle transport and mixing of the rainfall with the storage
present in the catchment. Moreover, while groundwater data
appear to be correlated with discharge data, and only a
marginal improvement could be obtained adding this infor-
mation to the model development process, isotope data
appear to provide an orthogonal view on catchment behavior.
[53] Although this work does not provide new informa-

tion on the behavior of the Maimai catchment, it arguably
contributes to new understanding on the value of data for
modeling. We use the Maimai catchment as a ‘‘proof-of-
concept’’ location to investigate how different forms of data
map to model components. While most catchments do not
have the abundance of data that is available at Maimai, in
the process of gauging an ungauged catchment it is impor-
tant to have an indication on the potential contribution of
data to process understanding. As Bonell et al. [2006] states:
‘‘We need data-rich basins to improve our ability to make
reliable predictions in data-scarce basins’’. This work gives
new guidance to what to measure, in what order and why,
which are questions that are particularly important for the
research in ungauged basins.

6. Conclusions

[54] We have presented an approach to the development
an a la carte catchment rainfall-runoff model structure. The
model was evolved iteratively as different types of data

were introduced and used to test its performance. The data
used included measurements of stream discharge, ground-
water levels and stream isotope concentration. The devel-
oped model was able to accurately reproduce the observed
system response, and its parameters were identifiable given
the calibration record and the selected measures of perfor-
mance. We attributed this result to the iterative approach
used. Unlike traditional one-size-fits-all model structures,
we make the case for evolving model complexity in
correspondence with observed model shortcomings. Our
approach addresses the uniqueness of place issue in that
the model reflects hypotheses that are related to the specific
area, whereas a predefined model structure might be devel-
oped for different environmental conditions. This is a result
of an interaction between modeler and experimentalist
which is an integral part of this approach.
[55] Data were introduced progressively to allow evolv-

ing model complexity as they inform additional model
components. A suitable structure for representing discharge
dynamics was represented by a series of two reservoirs: an
upper hillslope linear reservoir, and a lower hillslope
nonlinear reservoir. The model evaluation with respect to
discharge data required additional improvements, which
necessitated the introduction of thresholds (characterizing
the selective contribution of different portions of the catch-
ment) and a nonlinear distribution of storage within the soil
profile. The evaluation of this model with respect to isotope
data required the introduction of additional storage which
can be identified with the unsaturated zone. The ability of
the evolving model to reproduce additional data allowed
estimation of the contribution of complementary informa-
tion to process understanding. While groundwater data
appeared to be relatively correlated to discharge, stream
isotope data appear to be independent, providing an orthog-
onal view on the catchment behavior.
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