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Abstract: We used a generalized likelihood uncertainty estimation procedure with the Distributed Hydrology Soil Vegeta-
tion Model (DHSVM) for two streamflow and 11 road ditchflow locations. We observed considerable uncertainty in
DHSVM simulations of forest road and stream runoff. The accuracy of simulations decreased as the size of the area mod-
eled decreased. For streamflow, 44% of attempted model structures exceeded a 0.5 Nash–Sutcliffe efficiency threshold for
a 630 ha catchment; 12% of attempted model structures exceeded a 0.5 Nash–Sutcliffe efficiency threshold for a 55 ha
catchment. DHSVM simulations produced behavioral model structures for only six of the 11 road ditchflow sites (<10 ha).
Cumulative distribution functions of parameter values did not indicate specific parameter ranges of parameter values across
all locations, indicating that parameter values in DHSVM are influenced by their interaction with other parameters. The
sensitivity of parameters and the range of that sensitivity varied across simulations of road ditchflow and streamflow.
DHSVM simulations for two streamflow locations varied outside the uncertainty bounds for 10%–22% of storm volumes
and 12%–22% of peak flows, respectively. Twenty-eight percent to 52% of storm volumes and 28%–48% of peak flows
were outside the uncertainty bounds for the six road ditchflow locations.

Résumé : Nous avons utilisé une méthode d’estimation des incertitudes « Generalized Likelihood Uncertainty Estimation »
avec le modèle distribué DHSVM (« Distributed Hydrology Soil Vegetation Model ») pour deux sites d’écoulement fluvial
et 11 sites d’écoulement en fossés de drainage en bordure de route. Nous avons observé une incertitude considérable dans
les simulations du DHSVM de l’écoulement fluvial et de l’écoulement associé à un chemin forestier. La précision des si-
mulations diminuait à mesure que la taille de la zone modélisée diminuait. Dans le cas de l’écoulement fluvial, 44 % des
structures de modèle testées excédaient un critère d’efficacité de Nash–Sutcliffe de 0,5 pour un bassin de 630 ha; 12 %
des structures de modèle testées excédaient un critère d’efficacité de Nash–Sutcliffe de 0,5 pour un bassin de 55 ha. Les
simulations du DHSVM ont produit des structures de modèle comportemental pour seulement six des 11 sites d’écou-
lement en fossés (<10 ha). Les fonctions de distribution cumulative de la valeur des paramètres n’ont pas fourni d’étendues
spécifiques des paramètres pour l’ensemble des sites, indiquant que la valeur des paramètres dans le DHSVM est influen-
cée par leur interaction avec d’autres paramètres. La sensibilité des paramètres et l’étendue de cette sensibilité variaient
parmi les simulations d’écoulement en fossés et d’écoulement fluvial. Dans le cas de deux sites d’écoulement fluvial, les
simulations du DHSVM variaient au-delà des limites d’incertitude pour 10 % à 22 % des débits d’orage et 12 % à 22 %
des débits de pointe. Dans le cas de six sites d’écoulement en fossés, 28 % à 52 % des débits d’orage et 28 % à 48 % des
débits de pointe étaient à l’extérieur des limites d’incertitude.

[Traduit par la Rédaction]

Introduction

The effect of forest roads on watershed hydrology are a
focus of regulatory and scientific concern. This requires that
land managers and owners become more sophisticated in the
assessment of the impacts of their forest roads. Forest roads
generate overland flow from compacted surfaces (Harr et al.
1975; King and Tennyson 1984), intercept subsurface flow
at road cuts (Burroughs et al. 1972; Megahan 1972; Wemple
1998), and alter hillslope hydrologic processes. Forest roads
also can redistribute water on hillslopes and change the tim-
ing of streamflow, subsurface flow, and the distribution of
soil moisture (Megahan 1972; Wigmosta and Perkins 2001),

extend stream channel networks through gullies (Mont-
gomery 1994; Wemple et al. 1996), and alter peak flows at
stream crossings (Toman 2004).

The Distributed Hydrology Soil Vegetation Model
(DHSVM) is a tool that can be used to assess the influence
of forest roads on watershed hydrology (Wigmosta et al.
1994; Wigmosta and Perkins 2001). DHSVM contains a
road interception component that models the interception of
hillslope water at road cutslopes and runoff from the road
surface (Storck et al. 1998; Wigmosta and Perkins 2001).
Wigmosta and Perkins (2001) demonstrated the utility of
the road network component of DHSVM to show changes
in peak flows and in the routing of water along road net-
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works for Carnation Creek. Bowling and Lettenmaier (2001)
evaluated DHSVM for 12 culverts within Hard Creek and
Ware Creek and concluded that the model simulated outlet
peaks well and culvert peaks approximately. Bowling and
Lettenmaier (2001) predicted peak flow changes within the
watershed from the road network. In addition, La Marche
and Lettenmaier (2001) used DHSVM to simulate road in-
fluence on changes related to road runoff, peak flows, water
table, and forest harvest within the Deschutes River water-
shed. Despite these studies, there are few explicit tests of
the road component of DHSVM or evaluations of model un-
certainty, and an equifinality assessment has not been per-
formed.

Input requirements are demanding for physically based
distributed models such as DHSVM. Inputs to the model
and calculations within the model used to simulate the re-
sponse can generate considerable uncertainty. Uncertainty
and output error can come from a variety of sources: (i) pre-
cipitation inputs greatly influence the simulations of a rain-
fall runoff model such as DHSVM, (ii) the measurement of
precipitation has considerable spatial variability (Larson and
Peck 1974; Morrissey et al. 1995) and errors are associated
with its measurement (Chou 1968; Robinson and Rodda
1969; Green and Helliwell 1972; Peck 1972; Habib et al.
2001), (iii) parameter values of DHSVM (e.g., hydraulic
conductivity) are represented by a single value, depending
on the soil texture, although measurements of these values
can vary as much as 150% (Warrick and Nielsen 1980), (iv)
model structure errors account for a significant proportion of
uncertainty in predictions; this uncertainty generally in-
creases with model complexity and reflects the limitations
of our understanding of the processes at work (Brazier et al.
2000), and (v) errors in observations of road ditchflow and
streamflow used for comparison and evaluation of model
output add uncertainty to comparisons of model estimates.

In this study, we performed an uncertainty analysis of
DHSVM with respect to simulations of streamflow and road
ditchflow. We used the generalized likelihood uncertainty
estimation (GLUE) procedure (Beven and Binley 1992;
Beven 2001) to evaluate the uncertainty of DHSVM simula-
tions, parameter sensitivity, and the influence of parameter
interactions.

Methods

Study area
This study was conducted in the Oak Creek watershed

(630 ha) (Fig. 1) within the McDonald/Dunn Research For-
est managed by the College of Forestry, Oregon State Uni-
versity. Elevations within the watershed range from 140 to
more than 600 m. The average annual precipitation for the
Oak Creek watershed for the 2003–2006 water years was
970 mm/year with a range of 830–1110 mm/year. Precipita-
tion in the watershed is predominantly rain. The annual
snowfall depth is approximately 110 mm (Oregon Climate
Service 2005).

The underlying bedrock, the Siletz River Volcanics, is a
basalt formation (Knezevich 1975). Soils in the watershed
are predominately mesic Typic Hyploxerepts with areas of
mesic Pachic Argixerolls and mesic Typic Palchumults. The
most common soil texture is silty clay loam, although some

areas with silty loam texture are present. The forest trees are
predominantly Douglas-fir (Pseudotsuga menziesii (Mirb.)
Franco) with minor components of other conifers, hardwood
species, and grassy meadows.

There is a meteorological station near the outlet of the
study watershed where continuous observations of air tem-
perature, relative humidity, solar radiation, wind speed, and
precipitation have been made since 2003. In addition, there
are three rain gauges located at varying elevations and as-
pects throughout the watershed (Fig. 1). Hydrologic observa-
tions were recorded continuously at road ditchflow discharge
locations in Oak Creek using Tru-Track capacitance rods.
Discharge was calculated from stage observations based on
a rating curve developed for the Oak Creek culverts (Toman
2004).

DHSVM
DHSVM is a physically based distributed hydrologic

model that explicitly solves water and energy balances for
each model grid cell (Bowling and Lettenmaier 2001).
DHSVM was originally developed for use in forested,
mountainous terrain (Wigmosta et al. 1994) and then ex-
tended for use in maritime climates (Storck et al. 1995).
The model and the road interception component of the
model are described in detail elsewhere (Wigmosta et al.
1994; Storck et al. 1995, 1997, 1998; Wigmosta and Perkins
2001); thus, only a brief description is provided here.

DHSVM calculates the spatial distribution of soil mois-
ture, snow, evapotranspiration, and runoff in hourly or lon-
ger time increments for individual grid cells, or pixels,
based on the digital elevation model of the watershed. Mete-
orological inputs required for each time increment of the
model are precipitation, relative humidity, air temperature,
wind speed, shortwave radiation, and longwave radiation. A
one-dimensional water balance is calculated for each grid
point based on effects from vegetation, climate, soil hy-
draulic properties, and topography. The model uses a two-
layer canopy representation to calculate interception and
evapotranspiration of vegetation, a two-layer energy balance
model for snow accumulation and snowmelt, a multilayer
unsaturated soil model based on Darcy’s Law, and a satu-
rated subsurface flow model.

Once the water balance calculations are complete, each
grid cell exchanges water with adjacent grid cells, which re-
sults in a three-dimensional redistribution of surface and
subsurface water across the watershed. DHSVM calculates
the amount of overland flow from the road surface based on
the precipitation intensity and infiltration rate of the road
surface. Overland flow is routed in the road ditch to a drain-
age location. DHSVM also routes intercepted water at the
cutslope in the road ditch to a drainage location.

Site selection for study
For the GLUE evaluation of DHSVM, we selected two

streamflow locations and 11 road drainage culverts within
the Oak Creek watershed for the 2003–2006 water years
(Fig. 1). The two streamflow locations were the largest
watershed areas with streamflow measurements: Oak Creek,
at the outlet of the research watershed (630 ha), and a
smaller tributary, Claire Creek (55 ha). To select the 11
road drainage sites, we used the generalized random tessel-
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lation stratified design (Stevens and Olsen 2004), a spatially
balanced sampling approach. The sampling frame comprised
road sites with at least two winters of hydrologic data be-
tween the 2003 and 2006 water years.

DHSVM inputs
For input, DHSVM requires (i) spatial information about

the watershed in the form of binary grids created from Ar-
cInfo coverages of elevation, soil type, soil depth, and vege-
tation type and (ii) connecting arcs (spatially aligned lines)
for the stream network and road network. A 30 m digital el-
evation model for Oak Creek was projected from LIDAR
data with a resolution of 6 m. A pixel size of 30 m was
chosen because it would be large enough to encompass the

stream channel and road widths found in Oak Creek (a con-
straint of DHSVM).

The parameters of DHSVM that were varied for uncer-
tainty analysis comprised physical values associated with
water movement in the soil. To facilitate the Monte Carlo
analysis associated with the GLUE procedure, only one soil
type, a silty clay loam, was designated for Oak Creek. A
vegetation layer specifying one vegetation type (coastal for-
est type) was used to correspond to the Douglas-fir forest of
Oak Creek.

Soil depths were estimated with a soil depth model (West-
rick 1999) fit to 65 field measurements of soil depth meas-
ured in Claire Creek, a tributary of Oak Creek. The soil
depth model fit to field measurements provided the most ac-

Fig. 1. Upper Oak Creek watershed and study sites, Corvallis, Oregon, USA.
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curate output for DHSVM simulations of small-area hydro-
logic processes, such as road runoff, compared with an aver-
age or regionally estimated soil depth (Surfleet 2008). The
stream network for Oak Creek was generated by the ‘‘crea-
testreamnetwork’’ Arcinfo script provided with DHSVM.
The road network was mapped with GPS to within 1 m ac-
curacy. Road dimensions of cutslope depth, road width,
ditch width, road type (crowned, outsloped, and insloped),
and road ditch depth were measured in the field. The mete-
orological inputs for DHSVM were taken primarily from the
weather station within Oak Creek. Meteorological data from
the US Bureau of Reclamation Agrimet climate station in
Corvallis, Oregon, were used to develop relationships with
Oak Creek meteorological data to fill missing time periods.

GLUE analysis
The initial step in the GLUE procedure was to conduct a

Monte Carlo simulation with randomly selected parameter
values sampled over a uniform or previously known distri-
bution. For this study, we performed 10 000 model simula-
tions based on (i) randomly selected soil values of lateral
hydraulic conductivity, (ii) exponent of decay of the de-
crease in hydraulic conductivity by depth (an exponent of
the natural logarithm describing the decrease in hydraulic
conductivity by depth of soil), (iii) porosity of the soil ma-
trix, and (iv) vertical hydraulic conductivity. These four pa-
rameters and the range of values for each parameter selected
were based on preliminary model trials that demonstrated
competence at achieving model fit to observed data. Table 1
shows the ranges of values randomly sampled. Because unit
values for three of the parameters ranged from tenths to
hundred thousandths, we used a lognormal distribution for
random sampling. This method provided equal probability
of sampling for both low (hundred thousandth of a unit)
and high (1 or 10 units) values. Sampling from a uniform
distribution would have been weighted too heavily toward
high values.

Likelihood function (goodness of fit)
We used the Nash–Sutcliffe efficiency (NSE) function

(Nash and Sutcliffe 1970) as the likelihood function for the
GLUE procedure of DHSVM. The term ‘‘likelihood’’ has a
broader definition for the GLUE analysis than it does in
classical statistical techniques (Binley and Beven 1991). We
chose the NSE, first, because it provides a reasonable test of
the magnitude and timing between observed and simulated
time series points and, second, because it has been success-
fully implemented in other GLUE analyses (e.g., McMichael
et al. 2006) and used as a goodness of fit measure in other
DHSVM applications (e.g., Whitaker et al. 2003).

For the GLUE procedure for Oak Creek and Claire Creek
streamflow, we used DHSVM simulated time series that
equaled or exceeded an NSE value of 0.5. For road ditch-
flow, we used simulations that equaled or exceeded an NSE
of 0.3 because the fit of the time series of road ditchflow to
observed ditchflow was not as good as that for streamflow.
Road runoff is highly variable and can be highly influenced
by the intensity of local precipitation, which makes it diffi-
cult to match simulated and observed data by time periods.
We used an NSE of 0.3 to compensate for this discrepancy
and to obtain a conservative threshold value for evaluation

of uncertainty in model results. Higher values of NSE with
application of hydrologic modeling with DHSVM have
been reported in the literature (Whitaker et al. 2003; McMi-
chael et al. 2006). However, we used the more conservative
0.5 NSE for streamflow and 0.3 NSE for road ditchflow to
ensure that behavioral model structures were not excluded
because of drawbacks in the application of NSE.

Sensitivity plots
Parameter sensitivity can be interpreted from plots of the

cumulative distributions of parameter values grouped ac-
cording to rank by their likelihood measure. We plotted cu-
mulative distribution functions (CDF) for lateral hydraulic
conductivity, exponent of decay of hydraulic conductivity
by depth, vertical hydraulic conductivity, and porosity by
five different likelihood levels for each streamflow and
ditchflow site with behavioral model structures simulated
by DHSVM. The five levels of likelihood values represented
even divisions of the range of parameter values from the
lowest to the highest likelihood. The model was sensitive to
a parameter if there were dissimilarities in the CDF for
varying likelihood values. In contrast, similar CDFs of the
varying likelihood values for a parameter indicate that the
model was insensitive to that parameter.

Calculation of uncertainty bounds
The GLUE procedure allows uncertainty assessment for

simulated time series. In this case, a 95% uncertainty bound
was derived from the Monte Carlo simulation. The uncer-
tainty bounds depict prediction errors from model structure,
effective parameterization, and hydrologic processes as cal-
culated by DHSVM. The uncertainty bounds apply for the
entire time series and for individual time steps. These pre-
dictive uncertainty bounds define the upper and lower pre-
diction limits associated with the behavioral model
structures; they do not represent probabilistic confidence in-
tervals.

Results

GLUE assessment of DHSVM parameters
For the parameter ranges evaluated by the GLUE proce-

dure, the proportion of behavioral model structures for
DHSVM varied by location modeled (Table 2). For Oak
Creek (630 ha), 44% of the 10 000 model structures ex-
ceeded a threshold of 0.5 NSE and 100% exceeded 0.3
NSE. For Claire Creek (55 ha), 12% of attempted model
structures exceeded a threshold of 0.5 NSE, while 45% ex-
ceeded 0.3 NSE. DHSVM simulations exceeded the NSE
criteria of 0.3 for only six of the 11 road ditchflow sites.
For the six road ditchflow sites (<10 ha) that exceeded the
minimum NSE criteria, proportions of behavioral structures
that exceeded 0.3 NSE ranged from 19% to 90%; 1%–12%
exceeded 0.5 NSE. For five road ditchflow locations,
DHSVM did not produce behavioral model structures for
the 10 000 simulations attempted.

Parameter sensitivity and the range of that sensitivity var-
ied by site simulated (Fig. 2). The CDF plots indicated that
porosity was a sensitive parameter for all sites, except cul-
vert 54. The spread of the CDF for varying likelihood levels
for exponent of decay of the hydraulic conductivity by depth
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was not as great as it was for porosity, and while it was not
sensitive for all ditchflow locations, it demonstrated changes
in likelihood as values of the parameter changed. The sensi-
tivity of lateral hydraulic conductivity varied by site simu-
lated. Lateral hydraulic conductivity was not a sensitive
parameter for Claire Creek and it exhibited sensitivity for
only two of the six sites at which road ditchflow was as-
sessed with GLUE. The vertical hydraulic conductivity pa-
rameter was insensitive for all sites based on the tight
grouping of CDF curves for varying likelihood levels. Verti-
cal hydraulic conductivity did not show an association with
a particular range of values based on the relatively uniform
slopes of the CDFs (Fig. 2).

In general, sites that demonstrated sensitivity for one pa-
rameter showed sensitivity for the other parameters, except
for vertical hydraulic conductivity, which was insensitive at
all sites. At culvert 54, none of the four parameters eval-
uated showed sensitivity. Among the ditchflow sites, culvert
54 also had the greatest number of behavioral model struc-
tures.

The CDFs provided some indication of the range of pa-
rameter values that might be used for future simulations in
Oak Creek. One interpretation was the location that showed
the steepest slope on the high likelihood CDF curve (plot 5)
(Fig. 2). The length of the curve with the steepest slope in-
dicates a range of the individual parameter values with the
greatest sensitivity for DHSVM simulations.

The range of the parameter values with steep sections of
the CDF varied by site. CDF curves for lateral hydraulic
conductivity had very steep slopes at the low end of the
range of parameter values (Fig. 2); all but two sites show a
high proportion of values of hydraulic conductivity less than
0.001 m/s for behavioral model structures. The exponent of
decay of hydraulic conductivity by depth did not show a
trend of increased likelihood for particular values, although

two of the sites showed the highest likelihood values for ex-
ponent of decay of hydraulic conductivity by depth between
1 and 10. Porosity did not show a distinct range of values
that improved likelihood values. For a few of the sites, there
was a slight indication that porosity greater than 0.5 might
provide higher likelihood values, but this was not true for
all sites, nor was the evidence conclusive.

Uncertainty bounds for DHSVM simulations
Figures 3 and 4 show the 95% uncertainty bounds for the

two streamflow and two representative road ditchflow sites
that produced behavioral model structures from DHSVM
simulations in Oak Creek. DHSVM simulations for the out-
let of Oak Creek had less uncertainty than the other sites
evaluated. Storm volumes and peak flows were generally
within the uncertainty bounds derived from the GLUE pro-
cedure (Fig. 3). Only 10% of storm volumes and 12% of
peak flows observed were outside the uncertainty bounds
(Table 3). The accuracy of DHSVM simulations decreased
as the size of the area modeled decreased. Oak Creek was
the largest area modeled (630 ha), and DHSVM output had
less uncertainty, based on percentages of storm volumes and
peak flows outside the uncertainty bounds. DHSVM simula-
tions for Claire Creek (55 ha) showed greater uncertainty;
22% of storm volumes and 22% of peak flows were outside
the uncertainty bounds (Fig. 3; Table 3). For the six road
ditchflow locations analyzed with GLUE, 28%–52% of
storm volumes and 28%–48% of peak flows were outside
the uncertainty bounds (Table 3; Fig. 4).

Five road ditchflow locations did not meet the criteria for
model fit, demonstrating high uncertainty of model results
related to road ditchflow location. Figure 5 shows one
DHSVM model structure calibrated to Oak Creek and Claire
Creek streamflow for two of these road ditchflow locations
to demonstrate the problems in DHSVM simulations. During

Table 1. Range of parameter values randomly sampled for GLUE.

Parameter Range of values
Lateral hydraulic conductivity (m/s) 0.00001–1.0
Exponent of hydraulic conductivity decrease by depth 0.01–10.0
Vertical hydraulic conductivity (m/s) 0.00001–1.0
Porosity (%) 40–55

Table 2. Percentage of DHSVM simulations producing behavioral model struc-
tures.

Location NSE > 0.5 (%) NSE > 0.3 (%) Type
Oak Creek 44 100 Streamflow
Claire Creek 12 45 Streamflow
Culvert 27 1 63 Intermittent ditchflow
Culvert 30 2 42 Intermittent ditchflow
Culvert 54 12 90 Intermittent ditchflow
Culvert 79 0 0 Ephemeral ditchflow
Culvert 88 6 19 Intermittent ditchflow
Culvert 35 0 0 Intermittent ditchflow
Culvert 47 0 0 Intermittent ditchflow
Culvert 49 1 54 Intermittent ditchflow
Culvert 76 1 9 Intermittent ditchflow
Culvert 53 0 0 Intermittent ditchflow
Culvert 56 0 0 Ephemeral ditchflow

Surfleet et al. 1401
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the time period modeled for Oak Creek (2003–2006), four
storms had a recurrence interval greater than 1 year: the
largest four storms during the 2006 water year. These four
storms are shown at the right side of each of the time series
graphs (Figs. 3, 4, and 5). Estimations of storm volume for
these events varied considerably (Table 3). Storm volumes
observed for the largest areas modeled, Oak Creek and
Claire Creek, were within the uncertainty bounds for these
four largest storms. At road ditchflow sites, storms with re-
currence intervals greater than 1 year varied between zero
and three storms within uncertainty bounds. At Oak Creek,
one of the 1-year recurrence peak flows was outside the un-
certainty bounds; at Claire Creek, however, three of the 1-
year recurrence peak flows were outside the uncertainty
bounds. At the road ditchflow sites, peak flows varied from
0 to 4 within the uncertainty bounds. This result demon-
strates wide variability in the fit of DHSVM results within
uncertainty bounds for large events. The trend observed for
simulations at the largest area modeled (Oak Creek) showed
better fit to storms with recurrence intervals greater than 1
year than did the small-area simulations (road ditches).

Figure 6 shows storm volumes for streamflow and their

subsequent uncertainty bounds for Oak Creek and Claire
Creek. Figure 7 provides the same information for the two
road ditchflow locations with DHSVM behavioral model
structures. The trend shows small storm volumes at the
lower end of the uncertainty bounds and large storms at the
middle to upper ends of the uncertainty bounds, often out-
side the uncertainty bounds. These results suggest that
DHSVM tended to overpredict the volume of small storms.
In contrast, DHSVM often underpredicted the large storm
volumes and peak flows (events with recurrence intervals
greater than a 1 year) for the ditchflow locations. Similar re-
sults for Claire Creek showed that DHSVM underpredicted
peak flows with recurrence intervals greater than 1 year
(Table 3).

Discussion

DHSVM is a tool to assess the influence of forest roads
influences on watershed hydrology. To date, only manual
calibration techniques, the systematic altering of the most
sensitive or influential parameters of the model through a
sequence of model runs, have been used with DHSVM. The

Fig. 2. Sensitivity for four soil hydraulic parameters of DHSVM expressed as cumulative distributions in five levels of likelihood values for
behavioral model simulations from lowest likelihood values (plot 1) to highest likelihood values (plot 5).
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Fig. 3. Uncertainty bounds for DHSVM results for Oak Creek (630 ha) and Claire Creek (55 ha) compared with observed winter stream-
flow, 2003–2006. The x-axis time steps represent 3 h intervals; the y-axis streamflow represents cubic metres per 3 h. The time series in the
plots do not correspond to each other due to varying lengths of records; no comparison of timing among plots can be made.

Fig. 4. Uncertainty bounds for DHSVM results for two road locations with behavioral model structures compared with observed winter
streamflow, 2003–2006. The x-axis time steps represent 3 h intervals; the y-axis streamflow represents cubic metres per 3 h. The time series
in the plots do not correspond to each other due to varying lengths of records; no comparison of timing among plots can be made.
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problem with this approach is that it does not address the
concept of equifinality in the model’s use, which means
that many different model structures or groups of parameters
can provide acceptable answers. It would be preferable to
present model results in a range of acceptable answers to de-
monstrate the uncertainty in the model output. To date, the
use of DHSVM to model road hydrologic effects has relied
on one set of calibrated model parameters for its predictions
(Bowling and Lettenmaier 2001; La Marche and Lettenma-
ier 2001; Wigmosta and Perkins 2001; Cuo et al. 2003). All
published accounts of DHSVM hydrologic simulations have
relied on calibration of the model to one model structure
(e.g., Leung and Wigmosta 1999; Whitaker et al. 2003;
Beckers and Alila 2004; Schnorbus and Alila 2004). Our re-
sults demonstrated considerable uncertainty in the use of
DHSVM to represent forest road runoff; this suggests pro-
blems with a one-model structure approach.

Uncertainty and area
The area simulated by DHSVM influenced the uncertainty

of model results. The largest area where streamflow was si-
mulated was the outlet of Oak Creek (630 ha). Oak Creek
produced the highest proportion of behavioral model struc-
tures from the GLUE analysis. Oak Creek simulations also
provided the greatest proportion of modeled storm runoff
volumes and peak flows within uncertainty bounds. Claire
Creek produced the second highest amount of behavioral
model structures, the second largest proportion of peak
flows, and the third largest proportion of storm volumes
within uncertainty bounds. The smallest watershed areas
modeled, the road ditchflow locations, produced low propor-
tions of behavioral model structures and low proportions of
storm volumes and peak flows within uncertainty bounds.
For several of the road ditchflow locations, no behavioral
model structures were identified.

Table 3. Percentage of observed storm events outside the DHSVM 95% uncertainty bounds.

% storm volume
outside uncertainty
bounds

% storm peak flows
outside uncertainty
bounds

% storm volumes >1-year
event outside uncertainty
bounds

% storm peak flows >1-year
event outside uncertainty
bounds

Oak Creek 10 12 0 25
Claire Creek 25 22 0 75
Culvert 27 30 30 75 0
Culvert 30 33 28 50 50
Culvert 49 50 48 75 100
Culvert 54 14 38 0 75
Culvert 76 36 46 0 75
Culvert 88 30 33 0 0
Mean 29 32 25 50

Fig. 5. DHSVM simulation for two road locations with no behavioral model structures compared with observed winter streamflow, 2003–
2006. The x-axis time steps represent 3 h intervals; the y-axis streamflow represents cubic metres per 3 h. The time series in the plots do not
correspond to each other due to varying lengths of records; no comparison of timing among plots can be made.

1404 Can. J. For. Res. Vol. 40, 2010

Published by NRC Research Press

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

ni
ve

rs
ity

 o
f 

Sa
sk

at
ch

ew
an

 o
n 

08
/0

8/
17

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



The ability of DHSVM to simulate hydrologic responses
diminished for smaller catchment areas where the soil ma-
trix and associated hydrologic processes can be highly var-
ied. A limited number of model parameter combinations
were able to simulate the runoff within this variability. This
could be explained by a lack of site-specific data with which
the parameters of the model could be adjusted, although it is
more likely that the conceptualization of the hydrologic
processes in DHSVM are better suited for capturing larger
catchment area responses. Many of the associations between
DHSVM parameters are nonlinear; this would have a greater
effect on modeling smaller areas where parameter accuracy
would be most important. Small-scale soil, vegetation, and
climate differences have greater influence on modeling run-
off in small catchment areas than in large ones. In large
catchments, greater generalization of the soil and hydrologic
processes is more likely to meet modeling objectives.

The number of behavioral model structures decreased
with a decrease in area modeled (Table 3). This relationship
demonstrates that a greater number of model structures can
produce reasonable outcomes as the area of the watershed
modeled increases. Because our results show that the outlet
of a watershed accepts a larger number of model structures,
it is likely that model structures that are behavioral for
smaller areas will produce behavioral model structures for

larger areas. Thus, model structures chosen for DHSVM
might be improved with internal watershed data at smaller
scales than the outlet of the watershed to be researched. Us-
ing internal watershed information for model calibration is
counter to what many modelers actually do; models are cali-
brated by fit to the streamflow at the watershed outlet, with
some validation to internal watershed data. Most streamflow
observations available to evaluate models are at larger
watershed areas. The results here suggest that greater con-
sideration should be placed on collecting and adjusting mod-
els from smaller area observations. Certainly this is the point
of using distributed hydrologic models: to have greater con-
trol of the model calculations for small-scale processes.

Parameter values of DHSVM and uncertainty
A limitation of the GLUE assessment is its dependence on

Monte Carlo simulation (Beven 1998). For complex models
that require much computer time for a single run, such as
DHSVM, it is not possible to fully explore all parameter in-
teractions. Our analysis was limited by the computer resour-
ces available, which resulted in only 10 000 simulations that
varied only four model parameters. However, it has been
suggested that the upper limit of model performance is often
well defined by a limited number of model realizations (e.g.,
thousands) and that prediction intervals are reasonable in

Fig. 6. Observed storm volumes and DHSVM uncertainty bounds
for Oak Creek and Claire Creek. Storm volumes are plotted in in-
creasing volume. The storm numbers are not the same storms for
each plot due to the varied length of records.

Fig. 7. Observed storm volumes and DHSVM uncertainty bounds
for two road locations with behavioral model structures. Storm vo-
lumes are plotted in increasing volume. The storm numbers are not
the same storms for each plot due to the varied length of records.
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comparison with larger numbers of realizations (e.g., mil-
lions) (Beven 1998).

Generally, parameter values that produced higher likeli-
hood values also produced model structures with low likeli-
hood values. This indicates that the parameter values
manipulated in the GLUE procedure are influenced by their
interactions with each other. The GLUE procedure showed
that no optimum model structure could accurately estimate
the runoff for all road and streamflow sites across Oak
Creek. Different parameter value ranges and interaction of
parameters suggest that equifinality, the ability or likelihood
of many model structures to estimate the observed data,
would be an appropriate approach for DHSVM evaluations.

Lateral hydraulic conductivity and porosity and the expo-
nent of decay of hydraulic conductivity by depth were sensi-
tive model parameters for producing behavioral model
structures for DHSVM. But lateral hydraulic conductivity
was not sensitive for all sites. This was surprising, as this
parameter is considered influential in calculating subsurface
hydrologic response. Technical support for DHSVM sug-
gests the use of this parameter, among others, to assist in
calibrating the model (Land Surface Hydrology Research
Group 2008). However, the results from the GLUE assess-
ment showed that, although setting the lateral hydraulic con-
ductivity at a value reasonable for the various soil types is
important, making many adjustments to this parameter to
improve model fit might not be successful. The interaction
among parameter values appears to be more important for
model fit.

Soil porosity directly influences the volume of subsurface
water calculated for each grid cell of DHSVM; increased
porosity indicates a higher volume of soil available for
water storage when all other soil attributes are constant.
The same relationship is true with increases in soil depth;
thus, porosity could be viewed as a surrogate for soil depth
in model calculations, provided other model parameters af-
fected by soil are similar. The varying ranges of porosity ob-
served from the GLUE analysis therefore might be attributed
to inaccurate soil depth values upslope from road culvert lo-
cations. Within the Monte Carlo simulations, the porosity
value is held constant across the watershed for each simula-
tion, yet observed hydrologic data suggest that results varied
spatially. In previous research, we found soil depth to be in-
fluential in improving DHSVM results (Surfleet 2008). Soil
depth varies spatially, yet was not well estimated by topog-
raphy or physical terrain attributes. The sensitivity of soil
porosity suggests that spatial manipulation of porosity could
improve DHSVM results for small-scale modeling.

Inaccuracy of DHSVM simulated road responses at Oak
Creek

The hydrologic response of roads at Oak Creek was
highly variable, as observed from data for the roads for
which DHSVM did not produce behavioral model structures
(Fig. 5). For roads in the Oak Creek watershed, ditchflow
varied from intermittent (flows all winter, culvert 47)
(Fig. 5) to ephemeral (flows only when raining, culverts 53)
(Fig. 5). Other roads exhibited a mix of intermittent and
ephemeral road responses that depend on winter precipita-
tion conditions. Still other roads exhibited little to no ditch-
flow, even with a connected road cutslope and tread. The

varied hydrologic responses from roads in Oak Creek sug-
gest that there is considerable uncertainty associated with
the conceptual model of road interception and surface run-
off, used in DHSVM, for predicting road hydrologic effects.

Attempts to use physical measurements of topography,
soils, and road prisms to predict a road’s hydrologic re-
sponse have met with mixed success. Wemple and Jones
(2003) reported that hillslope length, soil depth, and cutslope
height explained much of the variability in the amount of
subsurface flow intercepted by cutslopes at the H.J. Andrews
Experimental Forest in the western Cascades. La Marche
and Lettenmaier (2001) found no relationship between peak
runoff and cutslope height of adjoining road segments in the
Deschutes River watershed in Washington. Gilbert (2002)
found no relationship between spatial variability of subsur-
face water interception from roads and topographic indica-
tors in the Oregon Coast Range. Ellingson (2002) found
that road length and elevation (surrogate for orographic pre-
cipitation effects) weakly correlated with the peak discharge
from roads for one storm analyzed in the Oak Creek water-
shed in the Oregon Coast Range. However, no relationship
was found for topographic or physical properties and total
storm runoff volume from roads. In a study of the Deschutes
River in Washington, La Marche and Lettenmaier (2001)
found that neither road gradient nor road drainage area was
statistically significant in determining the occurrence of gul-
lies from road drainage. This result might indicate that the
presence of macropore or pipe flow was more important
than hillslope steepness in determining the amount of sub-
surface flow intercepted by a road segment and hence the
propensity for gullies to form below the culverts
(La Marche and Lettenmaier 2001).

In the conceptual model within DHSVM for road hydro-
logic effect, interception of hillslope water occurs when a
seasonally high water table flowing over an impermeable
base (e.g., bedrock) becomes deep enough to intersect the
road ditch. The fraction of the permeable soil occupied by
the road cut becomes a controlling factor in the amount of
interception of subsurface flow. The published record on
the interception of hillslope water by roads demonstrates the
complexity of the subject and suggests substantial variability
(Luce 2002). Various researchers have observed that cut-
slope contributions can be much smaller than, equal to, or
much greater than road surface contributions; the dependen-
cies are not clear (Luce 2002). In several studies on forest
roads in Idaho and Oregon, researchers found that a substan-
tial part of the road runoff came from subsurface flow inter-
cepted by the cutslope (Burroughs et al. 1972; Megahan
1972; Wemple 1998; Marbet 2003). Marbet (2003) and
Toman (2004) found that in watersheds in the Oregon Coast
Range, the dominant mechanism for road runoff was varia-
ble throughout the watersheds. For some road segments, the
dominant mechanism was road interception of hillslope
water, whereas for others, it was overland flow from the
road tread.

Despite a reasonable effort to measure soil depth in the
field and a variety of different attempts at spatial extrapola-
tion, we did not achieve an accurate spatial representation of
the soil depths in Oak Creek (Surfleet 2008). Variable
weathering and fractures within the basalt geology in Oak
Creek have created topography at the bedrock surface that
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is highly erratic and does not reflect the shape of the surface
topography. The soil depths were poorly predicted by the
physical characteristics used in the soil depth model (West-
rick 1999) provided with DHSVM (Surfleet 2008). Because
DHSVM is a fully distributed model, it might be possible to
find parameter sets that provide a better fit to individual
road cuts and hillslopes, but their use would increase the
complexity of the modeling exercise, perhaps beyond the
scope of most decision-based analysis.

La Marche and Lettenmaier (2001) observed similar un-
certainty in road hydrologic response by DHSVM in an ap-
plication in the Deschutes River, Washington. They
hypothesized that this uncertainty could result from ditch in-
filtration, which is observed in the field but not modeled in
DHSVM. They also noted that road surface runoff is only
crudely represented in DHSVM. For roads, most hydrologic
effects modeled by DHSVM represent interception of hill-
slope water at the cutslope. In case studies of groundwater
effects from roads in Alaska, Kahklen and Moll (1999) ob-
served that groundwater intercepted by road cuts was
quickly infiltrated into the porous road ditch. They sug-
gested that some road prisms might act like conduits draw-
ing hillslope water under the road. DHSVM assumes that the
bedrock below the soil is impervious. Although not meas-
ured, certainly some water leakage occurs into the fractured
volcanic rocks in this watershed. Interception of hillslope
water was not consistent for some of the roads in Oak
Creek, which created an overprediction of road runoff.

Implications for management and change detection
Considerable uncertainty was identified in road hydro-

logic modeling by DHSVM for Oak Creek. The results sug-
gest that using DHSVM as a change detection tool in a
watershed such as Oak Creek, with highly variable hillslope
water flow and road interception, must be approached care-
fully. For watersheds such as Oak Creek, it would be diffi-
cult to conclusively determine hydrologic change using the
approach of one model structure calibrated to the watershed,
the approach used in other studies (Bowling and Lettenmaier
2001; La Marche and Lettenmaier 2001).

The fact that many road runoff locations analyzed in Oak
Creek produced behavioral model structures suggests that
individual road locations could be assessed for hydrologic
change within an equifinality approach. Behavioral model
structures identified for the individual road runoff locations
could be simulated in DHSVM with the road removed. The
difference in simulated road runoff with and without the
roads for all of the behavioral model structures would pro-
vide a range of road hydrologic changes that could be inter-
preted from DHSVM. Likewise, this same approach could
be done at larger watershed areas where behavioral model
structures identified at streamflow locations could be mod-
eled in DHSVM with the roads removed, which would pro-
vide a range of hydrologic change from the roads. The
assumption that must be accepted is that the behavioral
model structure identified with roads in the watershed would
still be behavioral when the roads are removed.

Several of the road runoff locations for Oak Creek had no
behavioral model structures with DHSVM. For these sites,
DHSVM cannot be used as a change detection tool. There-
fore, the modeler is limited in change detection assessment

to sites for which behavioral model structures can be pro-
duced. The question becomes what would this mean to the
assessment of change detection of road hydrologic effects at
the watershed scale? If not all road runoff locations provide
behavioral model structures in a watershed, can a watershed-
scale assessment of change detection of roads be trusted?
We suggest that the answer depends on how well DHSVM
does overall in the watershed; however, in their analyses of
change detection, modelers should provide the shortcomings
and uncertainties of their modeling efforts so that any con-
clusions can be interpreted accordingly.

The uncertainty in simulations was highest for individual
road ditchflow locations in Oak Creek and in the smaller
streamflow location at Claire Creek. Uncertainty decreased
for the simulations of streamflow at the outlet of Oak Creek.
It appears reasonable to approach a change detection assess-
ment for road effects modeled by DHSVM at the watershed
scale of Oak Creek but not at smaller tributaries in the
watershed, such as Claire Creek. However, an equifinality
approach produced a wide range of answers. Thus, only a
substantial hydrologic change could be conclusively inter-
preted.

Because behavioral model structures were not observed
for several of the road sites simulated, a modeling approach
based strictly on physical characteristics of topography, soil,
vegetation, and road dimensions for watershed scale change
detection with DHSVM is difficult. This might be addressed
through a more probabilistic approach to determining pa-
rameter values. The GLUE analysis provided distributions
of parameter values that produced behavioral model struc-
tures with higher likelihood values for specific spatial loca-
tions. If enough simulations were conducted, and the
observations were balanced across a watershed, the resulting
trends observed could adjust parameter values across space
as required. This strategy would entail using geostatistical
techniques for spatial interpolation of parameter values. It
would eliminate the ability to assess individual road seg-
ments, but it might reduce uncertainty for regions of the
watershed, such as individual tributaries.

Conclusions
The GLUE procedure provided useful information toward

equifinality of DHSVM results. The creation of uncertainty
bounds based on several influential parameter sets demon-
strated the wide range of acceptable results for road hydro-
logic modeling achievable with DHSVM. Results showed
the influence of interacting parameter values, and some a
priori parameter ranges can be interpreted for future
DHSVM applications. Likewise, knowledge of the sensitiv-
ity of parameters such as porosity and, to a lesser extent,
the exponent of decay of hydraulic conductivity by depth
and lateral hydraulic conductivity can assist future use of
DHSVM. The fact that so many repetitions of DHSVM
were used is in itself an argument for using the GLUE pro-
cedure with DHSVM.

We observed considerable uncertainty in DHSVM esti-
mates of road hydrologic response at Oak Creek. The varia-
ble responses of subsurface water, complex soil
development, and complex soil–water interactions within
Oak Creek appear to be the reasons for so much uncertainty
in DHSVM results. As the area increased, the uncertainty in
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DHSVM results decreased. Streamflow observations at the
outlet of Oak Creek showed less uncertainty and provided
the most diverse range of behavioral model structures. Be-
cause our results showed that the outlet of a watershed ac-
cepts a larger variety of model structures, model structures
that accurately estimate hydrologic responses at small scales
are more likely to produce behavioral model structures at
large scales. This suggests that the use of internal watershed
data, at scales smaller than the outlet of the watershed to be
researched, to determine model structures would improve
the use of DHSVM or other hydrologic models.

Our research incorporating diverse model structures into
DHSVM made the GLUE procedure useful for interpreting
DHSVM results. DHSVM did not produce behavioral model
structures for all roads evaluated, important when the use of
DHSVM as a change detection tool is considered. It sug-
gests that change detection will be limited to sites or sizes
of watershed for which behavioral model structures can be
identified. An alternative approach could be to identify pa-
rameter values that were most effective to produce behavio-
ral model structures for varied spatial locations. These
parameter ranges could then be varied across the watershed.
This approach might reduce uncertainty in watershed scale
change detection analysis but would eliminate the ability to
evaluate individual roads in a watershed.
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