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Introduction
There is already compelling evidence that climate change in northern
temperate, boreal and sub-arctic catchments is having a major effect on
hydrological processes (McClelland et al., 2006; Rennermalm et al., 2010).
The Commentary considers the cascade of implications of changes in the
annual water balance and seasonal streamflow distribution that can be
anticipated for water quality and in-stream ecology in northern regions.
Critical uncertainties, urgent research needs and sensitivities in the water
balance are identified, highlighting that many of these catchments are ‘on
the cusp’ of major change. In particular, uncertainties over the key role of
natural or managed changes in catchment vegetation in mediating the
impacts on the water quantity, quality and ecology of river systems will be
emphasized. Addressing this research gap will be critical in providing
support for adaptive land management aimed at protecting water
resources and sustaining ecosystem services. The focus for the discussion
are nine catchments (see Carey et al., 2010 for details) included in the
North-Watch (www.abdn.ac.uk/northwatch) project, an international
network of experimental catchments for comparative hydrological study,
which span a range of hydroclimatic conditions in the mid-latitude to high-
latitude region (e.g. Carey et al., 2010). The availability of hydrochemical
and ecological data at most of these catchments facilitated synthesis in
hypothesizing the integrated projections of climatic warming. Figure 1
shows the projected climate changes between present and the mid-21st
century for these nine sites. Although predicted changes in precipitation
totals are small at most sites, temperature increases will be marked as
General Circulation Model (GCMs) project some of the most dramatic
global temperature increases for this region (Intergovernmental Panel on
Climate Change, IPCC, 2007; Kundzewicz et al., 2007).
Changing Hydrology in Northern Catchments
Changes in magnitude, timing and phase of precipitation, along with
changing temperatures, will affect hydrological processes, water balance
and short-term hydrological dynamics via melt rates, as well as flow path
partitioning at the North-Watch sites (e.g. Capell et al., 2013b) and
throughout the broader North (Kundzewicz et al., 2007). The way in which
climatic forcing changes the hydrological function of catchments will be
mediated by their structure, i.e. the characteristics and spatial arrange-
ments of geology, topography, soils and vegetation communities (Ali et al.,
2012). In the short term, vegetation will be the most responsive element of
structure, and this will, in turn, interface with changes to hydrological
function such as the storage, mixing and release of water (Donohue et al.,
2007). Vegetation communities will respond to rising temperatures and an
increasing proportion of precipitation falling as rain. For example, their
composition and distribution can be expected to change, and also the
physiology of species may adjust, reflecting prolonged evolutionary
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Figure 1. Comparison of annual air temperature and water balance variables across the North-Watch sites as pie charts showing current and
mid-21st Century projections based on the Intergovernmental Panel on Climate Change assessment. Segment sizes of precipitation,
evapotranspiration and runoff are scaled individually, allowing intercatchment comparison of each variable (segment sizes not to scale for

within-catchment water balances)

igure 2. Interrelationships between hdyroclimate (mean annual
recipitation and mean annual temperatures) and major biomes
howing locations of the North-Watch sites at present (black dots) and

future scenarios (white dots) (after Shuttleworth, 1983)

INVITED COMMENTARY
adaptation to climatic variability through past glacial
and interglacial periods (Wookey et al., 2009). The ways
inwhich existing dominant species can adapt to changing
hydroclimatic regimes, through altered rooting patterns,
growth rates, leaf phenology and stomatal control on
water losses, will play a key role in determining how the
hydrology of catchments will be affected. This will
determine both the overall water balance and the short-
term hydrological dynamics viamelt rates, as well as flow
path partitioning (e.g. Brooks et al., 2010). Furthermore,
vegetation structure provides feedbacks that influence
patterns of snow accumulation, re-distribution and
melt in northern catchments (Pomeroy et al., 2006;
Bewley et al., 2010; Essery and Pomeroy, 2010).
Classification of northern catchments has potential in

providing a systematic basis for conceptualizing how
such future changes in hydrology may occur in different
regions (Wagener et al., 2007). Unfortunately, the issue
of classification in hydrology is challenging, and there is
little agreement on how best it is approached in a
consistent manner (Ali et al., 2012). In contrast, general
classifications in ecology can provide a framework that
acts as a useful starting point. For example, vegetation
characteristics of the major biomes can be generally
classified simply on the basis of mean annual precipita-
tion and temperatures (Shuttleworth, 1983). The North-
Watch catchments span a hydroclimatic gradient from
the Scottish Highlands through the Canadian sub-arctic
(Carey et al., 2010). The combination of mean annual
precipitation and mean annual temperature result in
vegetation communities that range through different
major biomes from tundra (Wolf Creek, Canada)
through coniferous boreal forest (Krycklan in Sweden
and Mharcaid in Scotland) to mixed broadleaved/
coniferous forests (Dorset, Hubbard Brook and Sleepers
767Copyright © 2013 John Wiley & Sons, Ltd.
River in North America or the Girnock in Scotland) and
temperate rainforest (at Strontian in Scotland and HJ
Andrews in the US) (Figure 2). The climate change
projections shown in Figure 1 indicate that some sites
could be highly susceptible to change because they are
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close to the boundary or on the cusp between biome types
(Figure 2), although we acknowledge that these bound-
aries drawn between the classes are artificial and that
different classification systems may appear to bemore or
less sensitive. Hydroclimatic change predicted from
GCMs indicates that impacts are likely to be greatest
at sites further north (Intergovernmental Panel on
Climate Change, IPCC, 2007). For example, Wolf Creek
maymove from Tundra to Boreal forest as temperatures
increase and permafrost thaws. Indeed, there is evidence
that this is already happening (Hinzman et al., 2005);
warming temperatures affect the disposition of the
forest, largely through the expansion of shrubs and the
upward migration of treeline (Danby and Hik, 2007)
(Figure 2). Likewise, more boreal sites such as Krycklan
and the Mharcaidh are on trajectories towards more
mixed northern forests with increased expansion of
broadleaved tree cover relative to conifers as tempera-
tures increase. Although the details of change at any
particular site will be more complex and modulated
by subtleties of topography, soils and aspect (Christensen
et al., 2008), major vegetation responses over the coming
decades are likely, although the longevity of forest
communities means it may take a long time for the
responses to become apparent (e.g. changes manifested
through soil development). That said, unexpected changes
are also possible, for example, increased fire influence or
heat stress in areas where increased summer aridity may
occur (Allen et al., 2010).
Dynamics of Change in Water Balance – the
Unknown Role of Vegetation
An enduring model for differentiating the hydrological
characteristics of catchments is the Budyko (1974) curve,
which plots the ratio of mean annual actual evaporation
(E) to mean annual precipitation (P) as a function of an
aridity index given by the mean annual potential
evaporation (Ep – as a proxy for net radiant energy) to
P. This shows that climate (as conceptualized byEp/P) is a
reasonable first-order predictor of annual water balance,
which can be a tool to aid hydrological classification
(Jones et al., 2012). Plotting the North-Watch catchments
by using the Budyko model for 10 years averaged data
differentiates the catchments according to climate
(Figure 3). This separates out the wetter catchments of
HJAndrews (in north-westernUSA) and Strontian (in the
western Scottish Highlands) from the drier catchments of
Krycklan in eastern Sweden and Girnock in eastern
Scotland. However, the driest catchment of Wolf Creek
also plots in the lower left of thefigure as a result of the low
energy available for evaporation.

A criticism of approaches such as that of Budyko has
been the assumption of stationarity in hydroclimatic
conditions (cf. Milly et al., 2008). However, this does not
preclude its use as a tool to assess future change (Jones
768Copyright © 2013 John Wiley & Sons, Ltd.
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et al., 2012). Thus, the locations of the North-Watch sites
on the Budyko curve were also plotted using the climate
change scenarios indicated in Figure 1, to see how
positions are likely to change by the mid-21st century.
With the exception ofWolf Creek and Krycklan, all sites
appear to be moving to a situation of increasing aridity
where the importance of E as a component of the water
balance, resulting from increases in Ep, will increase
relative to any increase in precipitation. In relative
terms, however, the sites are not arid and remain more
energy limited thanwater limited. At Krycklan andWolf
Creek, the increases in E and Ep are offset by projected
increases in precipitation. However, a major uncertainty
relates to another simplifying assumption of the Budyko
curve in that vegetation plays a passive role (Donohue
et al., 2007). In reality, changes in temperature and/or
precipitation will lead to a response in vegetation and
ecohydrological relations. This may involve changes in
the physiology of existing species, which may become
more efficient at limiting transpiration if water avail-
ability is stressed, or vice versa (Jones et al., 2012).
However, it may be that the composition and abundance
of species will change, and this can subsequently have an
effect on both interception losses and subsequent
partitioning of effective precipitation as either snow or
rain (Stephenson, 1990).
Although the Budyko curve is useful for comparing

the water balance of places, its traditional use at the
annual scale provides limited insight into the trajectory
of sub-annual hydrological conditions. Nevertheless, it is
this sub-annual change that is likely to result in the most
important consequences of the North-Watch catchments
to climate change. A critically important threshold in
Northern catchments is the 0 �C value, the frequency
with which it is crossed during the year as the energy
budget changes, and the length of time temperatures are
below it. The frequency the temperature threshold is
Hydrol. Process. 27, 766–774 (2013)
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crossed is highly variable, yet it determines the relative
importance of precipitation inputs as snow, the length of
snowpack duration and the frequency and rate of melt
(Kundzewicz et al., 2012). This, in turn, has a key
influence at the site scale on hydrologic processes such as
soil freezing and thawing and the consequent implica-
tions for soil infiltrability (e.g. Hardy et al., 2001; Zhang
et al., 2010), and at the basin scale on rainfall–runoff
relationships as well as the intra-annual and interannual
variability of the flow regime (e.g. Goode et al., 2013;
Campbell et al., 2011; Spence et al., 2011).
Snowpack development and melt dynamics vary

among the North-Watch catchments, resulting in strongly
contrasting snowmelt influences on rainfall–runoff rela-
tionships. This is shown in Figure 4, which plots the
normalized 10-year coefficient of variation of daily flows
(over different averaging periods) for four of the sites. In
the more northerly sites such as Wolf Creek, the highest
andmost variable flows of the year are usually during the
spring melt, with invariant flows for a prolonged winter
period. This is also the case at Krycklan, although
summer or autumn rain events provide high flow
variability and the low flow winter period is shorter. At
Hubbard Brook, spring melt is predictable in generating
a) Krycklan 

b) Wolf Creek

Figure 4. Colour maps of the coefficient of variation of flow. Left y-axis i
per day) plotted on the right axis. Colour depth grades from blue (low) to

(c) Hubbard Broo

769Copyright © 2013 John Wiley & Sons, Ltd.
high flows, but rainfall-induced high variability is evident
during the winter. At Strontian, snow is of minor
importance, and rainfall events produce periods of high
flow variability throughout the year.
Climate change scenarios for these sites project a

lessening of snowmelt dominance. In many cases this
will lead to higher winter flows if more precipitation
falls as rain, and declining spring and early summer
flows as snowpack accumulation is less and the melt
season is more intense (e.g. see analysis of Scottish sites
by Capell et al., 2013b; Campbell et al., 2011). The way
that catchment vegetation responds to these hydrocli-
matic changes will influence the feedback to water
balance and subsequently flow regime. This will be far
reaching, ranging from influences on patterns of snow
accumulation, re-distribution and melt, as well as
interception and transpiration losses that can particu-
larly affect summer low flow periods (Yates et al., 2000).
Of course, natural vegetation community response to
hydroclimatic drivers will occur over the scale of
centuries, although some will be more ‘fluid’ and rapid
depending on the speed of climate change, the species
involved and local factors such as soil, topography and
aspect, as well as extreme climatic events (e.g. increased
c) Hubbard Brook

d) Strontian

s the averaging period, and flows are the black dots (10 calendar years
red (high) Coefficient of Variation (CV): (a) Krycklan; (b) Wolf Creek;
k; (d) Strontian
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frequency of hurricanes projected for north-east
America) (Manning et al., 2009). However, vegetation
is managed in many areas, and land use policy and
management responses to mitigate climate change
impacts may be of equal importance (e.g. Hrachowitz
et al., 2010) especially as human population pressure
may increase in some localized areas in an ameliorating
North (Smith, 2011). Moreover, the ongoing response of
vegetation to historic land use change, which may
already be affecting vegetation–water relations
(e.g. Jones et al., 2012), will continue to be important.

Finally, there is the possibility that nonlinearities in the
atmospheric response to increasing greenhouse gas
emissions may result in sudden and abrupt changes in
climatic conditions that might instigate even more rapid
vegetation changes (Loarie et al., 2009; Beven, 2012). In
some places, greater extremes are being experienced, for
example, more intense storms, and less evenly distributed
precipitation with prolonged drier periods (e.g. Capell
et al., 2013a). Associated wind damage landslides and
droughts may have major implications for vegetation
dynamics (e.g. Allen et al., 2010). Any vegetation response
will overlay the influence of other elements of catchment
structure such as geology, topography and soil cover,
which will also affect the catchment response at shorter
timescale (e.g. Istanbulluoglu et al., 2012). This integrated
ecohydrological response will determine the degree to
which catchment surface and subsurface water storages
are able to buffer resistance of the annual streamflow
regime to hydroclimatic change (Carey et al., in review) as
well as the resilience of catchments to recover after
periods of extreme events (Carey et al., 2010).
igure 5. Cross-regional mean annual temperature (MAT)–dissolved
rganic carbon (DOC) concentration relationship. The regression line
odel (DOC = 11.62 + 1.51*MAT� 0.52*MAT2 + 0.027*MAT3) is
ased on the literature data only (Laudon et al., 2012, for details).
hiskers denote the range in MAT and annual average DOC

oncentrations for each of the regional average values. The North-
atch research catchments data (Wol, Wolf Creek; Kry, Krycklan;
or, Dorset; Gir, Girnock; Str, Strontian; Sle, Sleepers River; Mha,
harcaidh; Hub,HubbardBrook;Hja, HJAndrews) are annualMAT
nd average DOC concentration at each site. Here, whiskers denote

standard deviation in annual DOC concentration and MAT
Associated Biogeochemical Effects
Such projected changes in hydrology will also have
implications for catchment biogeochemistry and stream
water quality (Sebestyen et al., 2009; Whitehead et al.,
2009; Pourmokhtarian et al., 2012). Dissolved organic
carbon (DOC) is a key water quality parameter in
northern catchments with organic-rich soils. It has
already been shown that DOC production at forested
North-Watch sites is strongly related to a combination of
moisture availability and temperature (Haei et al., 2010;
Laudon et al., 2011). Intersite variations in terms of the
seasonality of DOC concentration and fluxes reflect the
interaction of the thermal regime (in terms of winter and
summer DOC production) and flow regime (in terms of
the timing of catchment export). Currently, the colder
sites that have more severe winters (less than �5 �C
average winter temperatures) experience an annual
export concentrated in the spring, whereas sites with
warmer winters (>0 �C average winter air temperatures)
exhibit more seasonally distributed exports with a winter
focus (Laudon et al., 2012). As temperatures rise, a likely
consequence is that the proportion of annual DOC export
770Copyright © 2013 John Wiley & Sons, Ltd.
in winter will increase along with water fluxes, both for
cold sites such as Wolf Creek and Krycklan and more
temperate sites such as Sleepers River and Dorset.
However, in the longer term, the work of Laudon et al.
(2013) suggests that the optimum range for DOC
production and export in northern catchments are at
sites where annual average air temperature lies between 0
and 3 �C (Figure 5). As future temperatures increase, it is
hence reasonable to anticipate that DOC concentrations
at sites such as Wolf Creek will increase as the large soil
organic pool mineralizes, but DOC concentrations at
warmer locations will likely decline as the organic pool
decreases (Schmidt et al., 2011). However, this is another
area where the uncertainty regarding the impacts of
vegetation response makes prediction difficult as vegeta-
tion change will both influence and be influenced by the
soil processes that govern DOC production and export.
For example, changing quality of soil organic matter can
be expected to accompany alterations in vegetation litter,
and a shift from coniferous to deciduous vegetation would
likely change the labile soil pool and subsequent
biochemistry of the DOC components (Dawson et al.,
2009). The implications for such water quality changes
are, of course, much greater than only on DOC, and the
reader is referred to Whitehead et al. (2009) for a more
comprehensive review.

Associated In-stream Ecological
Implications
Climatically driven change in streamflow regimes and
associated water quality effects will have far reaching
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implications for the ecology of northern freshwaters.
Temperature is a key driver of biological productivity,
and the life cycles of many freshwater organisms are
selected for seasonal variations in thermal regimes
(Friberg et al., 2013). Likewise, the annual flow regime
is often a major influence on in-stream ecology (Poff et al.,
1997). As an example, Kruitbos et al. (2012) showed that
the abundance and diversity of stoneflies (Plecoptera) for
the North-Watch sites was strongly influenced by both the
flow regime and the temperatures (Figure 6). These
tended to be highest at the warmerNorth-Watch sites that
hadmore variable flow regimes and thus higher andmore
frequent spate events than colder snow-dominated catch-
ments that are dominated by the primacy of the spring
melt. As stream temperatures increase and flow regimes
are more rainfall influenced, then the composition of
macroinvertebrate communities will change, with
Plecopterans being likely ‘winners’ as a result. However,
within this general pattern, species-level impacts will be
more complex.
Impacts on higher-order species can be hypothesized

from studies in one of the Scottish North-Watch
catchment, the Girnock, where Atlantic salmon (Salmo
salar) is a key species whose life cycle is closely keyed
into variations in the annual streamflow regime. As an
anadromous species, salmon spend up to 3 years in the
marine environment. This includes their main period of
growth, following an initial 2- to 4-year period as
juveniles in freshwater. They then return to freshwater
to spawn, and the entry of fish into spawning streams is
usually triggered by the onset of higher flows during the
autumn and winter periods (Tetzlaff et al., 2007, 2008).
Eggs spend the colder and high flow winter period at
depths up to 30 cm within river gravels. Eggs hatch and
juvenile ‘fry’ emerges into the water column during
May, which is typically the driest month in the Scottish
Highlands with the lowest streamflows. This is critical
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Figure 6. Relationship between Plecoptera genera diversity and
median annual flow (Q50) for selected North-Watch sites. Kr,
Krycklan; Do, Dorset; Gi, Girnock; Mh, Mharcaidh; St, Strontian;

HA, HJ Andrews (after Kruitbos et al., 2012)
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as these fish have insufficient strength to swim against
any current for a few weeks and can suffer catastrophic
‘wash-out’ during high magnitude–low frequency flows
(Tetzlaff et al., 2005a, b). Projected climate changes and
likely streamflow effects suggest increased winter high
flows and reduced summer low flows for this site
(Capell et al., 2013b). This is significant as it may
increase the risk of scour of spawning gravels during
the winter (cf. Goode et al., 2013) and increase the
risk of summer time thermal stress as the thermal
capacity at low streamflows is reduced whilst ambient
atmospheric temperatures will increase (Cunjak et al.,
2013).
Ecohydrology of Northern Vegetation – a Key
Research Challenge
The urgent and multifaceted challenges of climate change
and associated pronounced transformation in the hydrol-
ogy of northern catchments highlight theweaknesses of our
current science to inform policy for adaptive management.
A holistic hydrologic understanding that is more closely
integrated with other sciences such as biogeochemistry and
freshwater ecology and also social sciences is a prerequisite
for more comprehensive predictions of the future (Soulsby
et al., 2008). To reach such goals, new approaches need to
integrate both small-scale empirical studies to inform
modelling studies in both ‘top-down’ and ‘bottom-up’
manners (cf. Sivapalan, 2005). Such attempts are not new;
indeed, they are truisms to many involved in this research
field. Critically, however, long-term study sites, where high
quality long-term core data are supplemented by process-
based investigations, are fundamental for generating sound
data, information and knowledge (Lovett et al., 2007; Burt
et al., 2011; Laudon et al., 2011; Jones et al., 2012). This
importance of long-term study sites such as those used in
North-Watch cannot be overstated at the present time
when the economic constraints in many countries are
resulting in reduced financial support, or even cessation of
monitoring, at sites that are usually funded by public
agencies.
Perhaps, the greatest unknown, and a major justifi-

cation for continued long-term monitoring, is the role of
vegetation in modulating the effects of hydrological
change. Given increased global population growth and
associated development pressures in catchments in
localized parts of the hydroclimatic zone captured by
the North-Watch catchments, it is probable that the
future vegetation response will be more strongly
influenced by human decision-making in land use
management over larger areas. These decisions – which
may result in urban and industrial expansions in some
places and increased agriculture and forest harvesting in
others – will affect both local energy balances and
precipitation partitioning. Inmany cases, these are likely
to produce impacts that are similar to, or greater than,
Hydrol. Process. 27, 766–774 (2013)
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those that are climatically driven. To understand the
effect of changes in vegetation, assemblages on hydro-
logical function will require an understanding on how
water and energy interact to govern ecosystem function
over the lifecycle of vegetation stands. Of course, within
individual biomes or even small catchments, different
vegetation communities have distinct compositional and
functional characteristics that reflect contrasting hydro-
logical process domains. Thus, although some catch-
ments may bemore sensitive to change – and closer to the
‘cusp’ – some parts of catchments will be more sensitive
to change than others (Mengistu et al., 2013). In some
instances, these may be ‘hot spots’ or very small areas
that have a disproportional impact on catchment
responses, and it is important that they are recognized
by decisionmakers (McClain et al., 2003). In all cases, the
needs for evermore carefully integrated land and water
management underpinned by evidence-based science is
essential. Failure to do so is likely to result in unintended
implications that may result in long-term environmental
problems (Crouch et al., 2013).

Conceptually, such sensitivity of catchments can be
thought of in terms of the resistance of the catchment –
in terms of streamflow response – to changes in
hydroclimatic drivers. Catchment storage of water in
the soil and groundwater zones has been recently
highlighted as a key internal control on resistance
(McNamara et al., 2011; Soulsby et al., 2011). Similarly,
the resilience of catchments – i.e. their ability to recover
from major perturbations in terms of hydroclimatic
extremes – will also be governed by the physical and
ecological characteristics of the catchment (Carey et al.,
2010). The critical importance of vegetation communi-
ties in mediating the hydrological impacts of climate
change underlines the need for continued efforts to
transfer concepts between hydrology and ecology
(e.g. Newman et al., 2006). Although some of the
structural/functional relationships between water and
energy and vegetation communities are understood at
larger scales (e.g. Figure 2), the way in which these
ecohydrological relations interact in colder snow-
influenced regions, even within intensively studied
catchments such as those in North-Watch, is not well
understood. As discussed previously, the 0 �C value is a
critical hydroclimatological threshold in northern
catchments; it is also likely to be important for the
ecology of vegetation and associated interactions with
hydrological processes. Addressing the issues discussed
earlier will require using a suite of approaches
including remote sensing in upscaling, modeling in
refining projections and their associated uncertainties,
and comparative, cross-regional synthesis projects such
as North-Watch. Experimental catchments with exten-
sive process-based knowledge are crucial integrating
activities in such initiatives, so their importance has
never been greater.
772Copyright © 2013 John Wiley & Sons, Ltd.
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