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Runoff generation at the hillslope scale is an important component of the hydrological cycle. Recent work
has shown that a common hillslope runoff response mechanism is driven by connectivity of saturated
patches in the subsurface (via filling and spilling) to a threshold initiation of lateral flow at the hillslope
base. Here, we show that directed percolation theory is able to represent this key runoff process including
the details of dynamical flowpath development and filling and spilling processes at the soil-bedrock
unoff model
onnectivity
irected percolation

interface. We then use the directed percolation model to investigate how changes in slope angle, soil
depth, and subsurface microtopography influence stormflow response. We map the evolving subsurface
flow network under different hillslope classes and compare them to the natural system response. Our
results suggest that the natural system sheds water more efficiently than randomly generated systems
providing some insights into key hydrogeomorphic controls on water shedding in the environment.

© 2014 Elsevier B.V. All rights reserved.
. Introduction

The mechanisms by which hillslopes store and release water
ffect many ecological processes through biogeochemical and
utrient cycling (Stieglitz et al., 2003). There is a developing con-
ensus that filling and spilling of infiltrated rainfall at a soil-bedrock
nterface or along other subsurface impeding layer(s) is a dominant
rocess leading to hillslope runoff in a variety of hydrological sys-
ems (Spence, 2010; McDonnell, 2013). Connectivity of saturated
atches in the subsurface via filling and spilling leads to thresh-
ld flow activation at the hillslope base, and associated material
ransfer (McGlynn and McDonnell, 2003).

While several new quantitative measures of connectivity have
een developed for hillslopes and catchments (e.g. Western et al.,
001; Reaney et al., 2006; Bracken and Croke, 2007; Ali and
oy, 2009), spatially explicit modelling of the connectivity and
is-connectivity that dynamically occurs at a confining layer in
he subsurface has proved very challenging. Traditional Darcy-

ichards solvers have been used (Ebel et al., 2008; Hopp and
cDonnell, 2009; James et al., 2010) but are very computationally

xpensive and limit the scenarios that can be explored. Simpler
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conceptual models have been used (e.g. Weiler and McDonnell,
2003; Tromp-van Meerveld and Weiler, 2008) but they still require
more site information (antecedent soil moisture profiles, hydraulic
parameters, etc.) than is often available. More problematic is the
inherent stochastic nature of fill and spill, connectivity and thresh-
old response—something that defies both physically based and
conceptual modelling approaches.

One approach that shows considerable promise for capturing
the dynamics of lateral connectivity-associated thresholds is per-
colation theory. Lehmann et al. (2007) showed that with a small set
of simple rules they could match observed threshold response and
runoff ratio when modelling subsurface stormflow at the hillslope
scale. In other words, percolation theory subsumed the consider-
able process complexity that is usually described deterministically,
linking a stochastic pattern of spatial connectivity with the lateral
outflow behaviour.

While useful and certainly a step forward, the traditional per-
colation theory approach of Lehmann et al. (2007) was perhaps
too abstract a stochastic modelling approach because it did not
account for the spatial distribution of subsurface topography and
soil depth—two key controls on subsurface stormflow dynamics
that we have known about since Hewlett and Hibbert (1967).

Recent physics-based modelling work (Tromp-van Meerveld and
Weiler, 2008) shows how critically important such information is
for prediction. The question now is: how can we use a stochastic
approach like percolation theory, which is both parsimonious and
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Fig. 1. Panola experimental hillslope physical characteristics, with the average hillslope angle, 13.1◦ , relaxed in order to generate a map of topographic relief. The top of
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he hillslope is at the top of the figure. The three plots show (a) surface relief, (b) b
b), cells which are lower than their downslope neighbour are highlighted with squ
rosses—so it is readily apparent where water following the global gradient will typ

nherently suited to capture the observed linkage between subsur-
ace saturation connectivity and runoff threshold that we aim to
escribe, but more directly incorporate features that are known
o be of critical importance, such as topography and soil depth
istribution?

Here we apply the principles of directed percolation to bring
rocess realism into a stochastic, pattern-focused modelling
pproach for gaining new insights into the dynamics of hillslope
onnectivity and threshold response, using it as the basis for a
escription of the movement of water along a subsurface confin-

ng layer. Directed percolation theory is a special case, first posed
y Broadbent and Hammersley (1957), in which a direction of
ow is prescribed at each bond between neighbouring cells on a
rid. The advantage of directed percolation is that the direction
f flow can be based on the topography of the flow layer (in our
ase, the topography of the soil-bedrock interface), allowing for
ore realistic representations of spatial connectivity. Indeed, in

ccounting for this detail we shall be able to describe naturally
onnecting flowpaths along heterogeneous surfaces where local
radients do not always follow the global gradient (cf. Fig. 1b),
uch as Ambegaokar et al. (1971), and particularly Pollak (1972),

id in the original papers which used percolation theory to describe
lectrical conduction within random resistor networks exhibiting
imilar heterogeneity.

While directed percolation has previously been considered in
escriptions of infiltration-excess runoff on rough surfaces (Davy
t al., 2001), we are unaware of any previous application to the
roblem of modelling subsurface stormflow in hillslopes where
unoff occurs at a confining layer beneath highly permeable soil,
here the non-uniform delivery of water through heterogeneous

oil exceeds the infiltration capacity of the lower (e.g. fractured
edrock) layer. In this case, the spatial variability of soil depth
dds a significant layer of complexity to the dynamical process of
nfiltration-excess fill-and-spill at the impeding surface.

This paper outlines how a model based on directed percolation
an be used to represent what we call “essential hillslope real-
sm” (following Dietrich et al., 2003), thereby bridging the gap
etween the abstract statistical realism of modelling approaches

ike that of Lehmann et al. (2007), which incorporate little detail of
he real world, and the detailed realism that process-deterministic

pproaches are unable to achieve (e.g. due to CPU and resolution
imits). Our objectives are: (i) to examine the ability of directed
ercolation to match observed fill, spill, connectivity, threshold
ynamics for a well-characterised hillslope, (ii) to use the model as
k relief, and (c) soil thickness, in metres over the 29 m × 51 m hillslope section. In
and cells which are lower than their left and right neighbours are highlighted with
pool along ridges, and also which preferential spillways will be taken.

a virtual experiment tool (following Weiler and McDonnell, 2003)
to explore the effects of slope angle on fill and spill, connectiv-
ity and threshold response, and (iii) to examine the effects of soil
depth and subsurface topography on connectivity dynamics via the
virtual experiment approach.

2. Background on the Panola hillslope

In order to realistically capture the observed process of perched
stormflow along soil-mantled bedrock, we develop our directed
percolation approach based on field-measured runoff dynamics at
the Panola experimental hillslope, located within the Panola Moun-
tain Research Watershed near Atlanta, Georgia, USA. Fig. 1 shows
the bedrock and surface relief at Panola along with a map of soil
depth. The hillslope angle is 13.1◦, with a trench dug at its base
(at the bottom of Fig. 1) in order to capture runoff, as described
in Tromp-van Meerveld and McDonnell (2006a) and Tromp-van
Meerveld et al. (2008).

During storm events which are typically of long duration and
low intensity, rain infiltrates vertically into thin (∼0–2 m) sandy-
loam soil that varies in depth, and therefore reaches storage
capacity at different times across the hillslope. When the soil’s stor-
age threshold has been reached, water begins filling depressions
along the bedrock surface, and eventually spills laterally downslope
(cf. the organisation of rills and spillways along the bedrock surface
in Fig. 1b, as described in the figure’s caption), all while a percent-
age infiltrates further into the bedrock (Tromp-van Meerveld and
McDonnell, 2006a,b). Tromp-van Meerveld et al. (2007) measured
a 91% bedrock infiltration loss rate on the Panola hillslope in a series
of sprinkling experiments.

The main factor that limits whether any appreciable flow will be
observed at the base of the slope is the cumulative rainfall amount,
since a certain volume must always go towards saturating the lower
part of the soil profile and filling the bedrock depressions before
flow in the trench at the base of the hillslope is observed (Tromp-
van Meerveld and McDonnell, 2006a). Given a large enough event
to produce stormflow, the main physical controls on the process
development are then: antecedent soil moisture deficit, bedrock
loss rate and bedrock topography.

The antecedent soil moisture deficit depends on both the

soil depth, which varies across the hillslope, and the antecedent
soil moisture. Data records from 123 storm events at Panola (as
reported by Tromp-van Meerveld and McDonnell, 2006a,b) indicate
that the antecedent soil moisture does not exceed ∼0.41 vol/vol,
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in soil depth and topography by constructing two arrays with the
same length and width as the hillslope. In one, the gradients in the
directions of each point’s four nearest neighbours1 are ranked in

1 We also used an eight-directional scheme, which resulted in slightly greater
runoff, earlier threshold, etc., given the same conditions. However, the effect was
found to be equivalent to that of slightly lowering the loss rate or antecedent mois-
ture deficit—i.e., there is equifinality in our model between the precision of the
routing mechanism and the values of the other model parameters—so we chose
to present only the results obtained with the four-directional scheme. There is no
ig. 2. (a) Runoff as a function of total precipitation, and (b) relationship betwee
ecorded at Panola hillslope. In (b), the total runoff measured at each event is indica

nd that the majority of significant runoff events occurred when the
oil moisture was near this value prior to the storm. Fig. 2b shows
ow runoff is a complex tradeoff between antecedent wetness,
ainfall intensity, and rainfall amounts, whereby low antecedent
oil moisture can only produce runoff if peak rainfall intensity
r cumulative precipitation is high. The bedrock loss that occurs
nce soil storage capacity is reached depends on the ratio between
edrock and soil infiltration potential.

In addition to antecedent soil moisture deficit and bedrock loss
ate, the other dominant physical control on the runoff generation
rocess at Panola is bedrock topography. Of course, this factor does
ot vary from one event to the next: water that is delivered verti-
ally through the soil to the bedrock (that does not leak further into
t the bedrock) will flow along the bedrock gradient (McDonnell
t al., 1996).

. Methods

.1. Directed percolation model

We use directed percolation theory to capture the system-
overning processes described above. Using a gridded map of the
illslope, the potential for cell i to become saturated is defined as
he ratio of the average soil moisture deficit to the moisture deficit
t cell i:

i = SMD · �̄ + ı

SMD · �i + ı
,

here SMD is the soil moisture deficit, �i is the cell’s soil depth,
¯ is the average soil depth over the hillslope, and ı is the micro-
epressional storage capacity at the soil-bedrock interface, which
e set equal to 1 mm. Our approach then involves several simpli-

ying assumptions. The most significant of these (only possible in
stochastic model that can be run a number of times) is that the
evelopment of a perched water table (i.e. soil saturation devel-
pment) is binary: a cell in a two-dimensional grid representing
he soil-bedrock interface, is simply wet or dry, which we keep
rack of in a two-dimensional array of 1s and 0s. As we progress
hrough a Monte Carlo simulation (described in more detail below),
hese 1s and 0s are redistributed as a result of the processes cap-
ured by the model, and with enough realisations that the average

illslope saturation levels off, that average is taken to represent
he typical evolving saturation pattern during an event with the
rescribed conditions and model parameter values. This assump-
ion enables us to simulate complex subsurface flowpath
cedent soil moisture and peak hourly averaged rainfall intensity, for 123 events
y the radius of a surrounding circle.

development within a dynamical and highly heterogeneous sys-
tem, with little computational expense.

Another significant simplifying assumption made in this anal-
ysis is that the antecedent soil moisture deficit and the bedrock
loss rates are constant. It would not be difficult to model spatial
heterogeneity or time-dependence in either parameter, which the
model would handle in much the same way as it does the delivery
of rain through spatially heterogeneous and increasingly saturated
soil (described below). However, we decided that this further level
of complexity would not significantly add to the overall process
understanding we have hoped to derive from this virtual tool,
because: (i) while there is a two-orders-of-magnitude variation in
soil depth values, the soil moisture, e.g. tends to vary by only a
factor of 2 (determined from publically available data published
by Tromp-van Meerveld et al., 2008), so the greater contribution
to spatial variation in SMD should come from the variation in soil
depth rather than the variation in soil moisture; (ii) soil moisture
content is likely correlated with soil depth, with shallower soils
drying more readily, which would serve to homogenise soil mois-
ture deficit to some extent—but in our model the same effect can
be achieved by decreasing the value of SMD, and we emphasise
that our purpose, in Section 4.1, is only to constrain behavioural
model parameters to use in our subsequent analysis; and (iii) there
is equifinality between the effects of the two constant parameters
(see e.g. Fig. 4a below), so modelling detailed spatial variation in
them would confound the results anyway. Notwithstanding, use of
constant parameter values results in the development of already
highly complex subsurface saturation patterns as shown below.

Before we begin running Monte Carlo simulations that add rain
to the hillslope, we take account of the principal heterogeneities
great loss of information in this since, as noted, there is already equifinality between
the two model parameters. However, it is interesting to note that increasing from a
four- to an eight-directional scheme (a topological change) is effectively similar to
decreasing the bedrock loss rate or the antecedent soil moisture deficit (i.e. our two
dimensionless physical parameters)—as each tends to increase connectivity.
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rder from lowest to highest using the topographic map. A second
rray is then constructed with the discrete values of the initial prob-
bility density function for rainwater to be delivered through the
oil to the bedrock (the “delivery PDF”). This delivery PDF is found
y normalising the array of wi’s defined above so that they sum to
.

It should be noted that while ı is technically another model
arameter that could be varied, the added complexity of allowing

t to do so does not actually increase model versatility: if � is much
arger than SMD · �i, the unnormalised weights wi ≈ ı/ı = 1, and if
t is much smaller than SMD · �i, the soil moisture deficit SMD can-
els from wi ≈ (SMD · �̄)/(SMD · �i)—therefore, SMD is rendered
neffective either way; on the other hand, the model behaviour at
hese two extremes is precisely what is intended to be captured
y considering soil moisture deficit—i.e., when SMD is very small,
nd only a little water is needed to saturate the soil anywhere, the
eights level off so that the delivery PDF becomes more uniform;

nd as SMD becomes larger, the heterogeneity of the delivery PDF
hould become as pronounced as that of the soil depths. Therefore, it
s really only interesting to vary SMD between these two extremes,

hich we can do effectively by holding ı constant. Furthermore, if ı
ere 0, the weights wi would be infinite at cells where the bedrock

s exposed (�i = 0), whereas even exposed bedrock should hold
bout a millimetre of rain in micro-topographic depressions—so
e have taken that as the value of ı.

Next, given our array of ranked gradients and the initial delivery
DF, we begin simulating cumulative subsurface stormflow devel-
pment during a rain event. In each iteration of these Monte Carlo
imulations, a cell is randomly selected using the delivery PDF and
f it was not previously selected (as in the first iteration) it becomes
aturated. The soil depth is set to zero as a way of setting the soil
oisture deficit to zero for the now-saturated cell and the delivery

DF is updated accordingly. A two-dimensional “saturation map”
rray (that initially contains all 0s) is given a 1 at that cell’s loca-
ion to indicate the presence of perched water at the soil-bedrock
nterface.

While we saturate a particular cell with a particular moisture
eficit value in each Monte Carlo iteration, the depth of water that

s infiltrated is always calculated as the average moisture deficit
ver the hillslope; therefore, the depth of water that would satu-
ate the entire hillslope, divided by the hillslope area, is added to
single cell at each iteration. This assumption is intended to allow

he routing and saturation development processes to be captured
tochastically, and is relevant only in the calculation of cumulative
ainfall and (in case water is routed laterally down to the trench)
unoff. We will justify this significant simplifying assumption with
ome remarks after describing the routing algorithm.

In subsequent iterations, when a previously saturated cell is
elected, we first use a maze-solver on the saturation map to deter-
ine the extent of the locally saturated area within the hillslope

which may be only the one cell that was selected, or a locally
onnected pond or ribbon; we will refer to this generally as the
local patch”2). The water that falls on the saturated cell is then
outed down to the lowest unsaturated neighbour at the perimeter

f the local patch. In this step, a number of points are taken into
onsideration:

2 The locally saturated area, or “local patch”, therefore represents the two-
imensional extent in which a connected shallow water table is supposed to exist
t the soil-bedrock interface. The area may be as small as a single cell, but may vari-
bly extend outwards along “ribbons” where runon has occurred, or could be a larger
ond. In the percolation literature, such “local patches” are typically referred to as
clusters”—but as we mean here to describe the presence of liquid water rather than
n aggregate of discrete cells, the word “patch” more closely resembles the various
wo-dimensional forms we might expect there to be in reality.
Modelling 298 (2015) 64–74 67

i. We assume that water can flow freely between adjacent cells
that are both saturated (site percolation).

ii. The excess water that has been delivered through a previously
saturated cell eventually spills along the gradient to the low-
est dry cell adjacent to the local patch. This is a “directed”
percolation model in which the spill direction is dynamically
determined—i.e., the same governing rules always apply, but
the spill direction at a given cell may change from one iteration
to the next depending on the evolving saturation pattern.

iii. In some cases water will not flow along the gradient from the
particular cell that was selected—e.g., if the cell in that direc-
tion was not previously saturated—but will preferentially take
a connected path, in accordance with percolation theory, only
to follow the gradient at the bottom where the excess water
from the wet patch must spill.

iv. For the same reason, water will tend to work its way out of a
depression, along the slope of shallowest ascent—which is the
slope of steepest descent in the case that all directions from the
local patch point uphill.

v. When water does eventually spill laterally, saturating the low-
est dry neighbour of the local patch, the soil column at that cell
should not become saturated, so the delivery PDF is not updated.
Thus, we model lateral subsurface stormflow beneath soil that
may not yet be saturated all the way through, but occurs as a
result of thinner soil upslope.

vi. Iterations of the model are not time steps: only subsequent
iterations affecting the same local patch can be considered as
subsequent in real time, whereas iterations with no causal con-
nection could be in any order.

vii. Water only makes its way to the outlet (trench) through con-
nected flowpaths that develop dynamically in this way; but by
the time a connected path to the outlet has formed, the hillslope
tends to be saturated enough that water often lands some-
where along it, and measurable runoff occurs. Indeed, such
connectivity-related thresholds are a fundamental feature of
percolation theory, which is the primary reason for considering
the subsurface stormflow generation process in this way.

The routing step is the main step in the model algorithm. When
it is complete, the final step of an iteration is to account for leak-
age into the bedrock. This is done at a pre-defined random fraction
of iterations, by locating the highest point in the locally connected
patch, and replacing the 1 at that location in the saturation map
with a 0. The idea is that in the course of an iteration where leak-
age occurs, the full volume of water delivered to a saturated patch
eventually gets redistributed along the gradient at the bottom of
the local patch, as usual. However, as this occurs, the same volume
of water will leak into the bedrock throughout the patch, allowing
the water in the uppermost cell to drain into the lower cells where
some storage opened up through bedrock leakage. The fraction of
iterations where this occurs is the bedrock loss rate.

Lastly, it is important that the number of iterations be large
enough for the sample that is drawn from the dynamically evolv-
ing delivery PDF to be statistically valid. We ran typically about 104

iterations in an event that added 100 mm of water over an area
containing approximately 1500 cells, which we then deemed suf-
ficient when the products are averaged over 25 model realisations
(see Section 4.1).

3.2. Model implementation

Our aim is to use the directed percolation model as a virtual

tool that will help us to explore the effects to runoff generation
processes at the hillslope scale when soil depths and topography
are changed. Also, since we are interested in capturing the cumu-
lative outflow and also the emergence and dynamical evolution of



6 logical

t
m
a
c
t
a
w
i

i

i

v

w
d
s
m
i
m

o
d
t
h
e
t
b
g
b
s
(
t
o
t
i
a

h

8 D. Janzen, J.J. McDonnell / Eco

he flow network at the soil-bedrock interface, we require some
eans of assessing that. We therefore introduce parameters that

re meant to capture the full dynamical extent of saturation, and
ompare to the delivery PDF. For the purpose of assessing the effects
hat topography and soil depth have on both cumulative outflow
nd the dynamical extent of hydraulic activity at the subsurface,
e investigated the variation in six output parameters that are

ntended to broadly characterise the system:

i. cumulative runoff at 100 mm of rainfall;
ii. rainfall threshold, defined as the depth of rain required to

produce 1 mm of runoff, which Tromp-van Meerveld and
McDonnell (2006a,b) established as the amount associated with
hillslope connectivity at Panola;

ii. average runoff ratio, calculated directly from i. and ii., i.e.

cumulative runoff − 1 mm
100 mm − threshold

;

v. saturation frequency, calculated as the spatially and temporally
averaged frequency during a 100 mm event, that a water table
exists at the soil-bedrock interface—i.e., the spatial and temporal
frequency of saturation at the flow surface;

v. a variant of flowpath depth (cf. Asano and Uchida, 2012), defined
as the temporally averaged saturation frequency at each point,
multiplied by the soil depth there, then averaged over the entire
surface; and

i. delivery halflength, which we define as the upslope distance
within which 50% of the water should be delivered to the
bedrock; e.g., the delivery halflength calculated from the Panola
soil depth map is 0.57, which means that the soil is thinner on
the upper half of the slope, so half of the rainwater that finds
its way to the soil-bedrock interface, which can potentially con-
tribute to runoff, should be in the upper forty-three percent.

These six measures of hydraulic activity are intended to capture
hen a hillslope will shed water (ii.), how efficient it will be in
oing so when that occurs (i. and iii.), and the extent of subsurface
aturation during a storm event (iv.) in relation to where water is
ost likely to be delivered to the subsurface (vi.) and how much

s routed to where it is less likely to have come through the soil
atrix (v.).
While the reasons for considering parameters i.–iv. and vi. are

bvious—e.g., we are interested to see what effects the changes in
elivery pattern will have on runoff characteristics, such as whether
he rainfall threshold (ii.) is positively correlated with delivery
alflength (vi.), as one might expect3—the relevance of v. is further
xplained now. The usual measure of flowpath depth is defined as
he volume of water that passes through each point, multiplied
y soil depth, and is intended as a proxy for transit time since
reater values of the latter should result when water emerges at the
edrock through deeper soil, or when it passes underneath thick
oil having been fed by points upslope where the soil is thinner
Asano and Uchida, 2012). In fact, the very existence of a water
able below deep soil should indicate the same, so that our variant
f flowpath depth should be as useful. Furthermore, we note that

his variant would be more accessible to field measurement, as it
s possible to remotely measure and record the water level inside
network of capped wells with high frequency.

3 In fact, our results indicate that threshold is only loosely correlated with delivery
alflength.
Modelling 298 (2015) 64–74

4. Results and discussion

4.1. Ability of directed percolation to represent measured
patterns and response

The effects of randomisation in our directed percolation model
caused the dynamical system to evolve somewhat differently in
each realisation. So, by construction, our directed percolation
model did not produce the same outputs each time it ran with
a given set of inputs. System-governing rules were imposed so
that the flowpath development was similar from event to event.
The first step of our calibration was therefore to determine how
many realisations of the model should be necessary before the aver-
age values of our characteristic parameters levelled off. This was
done using two different sets of parameters, chosen arbitrarily to
represent dry (SMD = 0.15) and wet (SMD = 0.02) initial moisture
conditions (cf. Fig. 2b: measured antecedent soil moisture values
range from ∼0.31 to 0.41 vol/vol; therefore, these soil moisture
deficit values should represent realistic limits). Bedrock loss rates
(0.4 and 0.9, respectively) were then chosen so that the threshold
would be roughly as observed at Panola by Tromp-van Meerveld
and McDonnell (2006a).

Fig. 3a shows the cumulative fraction of cells sampled as the
number of realisations increases from 1 to 50, and Fig. 3b-f shows
the variation in the average value of each parameter over the
same range of realisations. Note that when SMD = 0.02, cells with
soil depth less than 0.1 m/0.02 = 5 m should become saturated in a
100 mm rainfall event, and when SMD = 0.15, cells with soil depth
less than 0.67 m should become saturated in a 100 mm event. In the
former case, all cells should become saturated since the maximum
soil depth on the Panola hillslope is 1.87 m, whereas only 58% of our
soil depths fit the latter constraint. The fact that less of the hillslope
should be sampled in the latter case is reflected in Fig. 3a; however,
the model is clearly undersampling in both cases (in one realisa-
tion, 90% of the cells are sampled when SMD = 0.02, rather than
100%; and 38%, rather than 58%, are sampled when SMD = 0.15),
so we compensate for this by considering average outputs from a
number of realisations. Given the uncertainty in the average val-
ues from each of these sets of realisations (estimated as the sample
standard deviation), we decided that all the averages levelled off
by 25 realisations in both the wet and dry cases.

Having found the number of realisations necessary to determine
typical average outputs from a storm event with given antecedent
soil moisture deficit and bedrock loss rate, the next step was to
determine the values of these parameters that should represent
typical conditions for an event at Panola where runoff would occur.
We emphasise that the purpose of this analysis was not to deter-
mine “the” values of antecedent soil moisture deficit and bedrock
loss rate at Panola, as these are variable parameters—i.e., as Fig. 2b
shows, the average antecedent soil moisture varies by a factor of
at least 0.1 vol/vol; and indeed, we expect the bedrock loss rate
to vary depending on rainfall intensity and soil moisture condi-
tions, so that e.g., if rainfall intensity peaks when the soil is already
mostly saturated and a water table is present throughout much
of the hillslope, a greater portion of that rain should run off, and
the loss rate would therefore be less. The fact that a given amount
of precipitation does not translate to a well-defined amount of
runoff is evident from Fig. 2a, where the rainfall-runoff data do
not fall along a well-defined curve. This scatter occurs because of
factors like antecedent moisture and rainfall intensity, which vary
from event to event—and indeed, Lehmann et al. (2007) found it
useful to separate the observational data into events with “wet”

and “dry” antecedent soil moisture conditions. Our objective here
was not to account for this scatter and determine actual values
of the antecedent soil moisture deficit and bedrock loss rates for
each individual event, or even for broad classes of events. While
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Fig. 3. (a) Cumulative fraction of surface sampled, and (b–f) variation in different characteristic parameters, as they are averaged over the number of model realisations,
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hown in red) both level off by 25 realisations. Loss rates of 0.9 for low SMD and 0
anola hillslope. (For interpretation of the references to colour in this figure legend

nteresting, this approach has already been successfully explored
e.g., Lehmann et al., 2007; Tromp-van Meerveld and Weiler, 2008),
o another iteration with a different model is not likely to signif-
cantly impact our understanding. Instead, our approach has been
o utilise broad characteristics in the observables—viz. the roughly
0 mm rainfall threshold (Fig. 2a), and the fact that most runoff-
roducing events occurred under already wet conditions, when
he antecedent soil moisture was near its maximum (Fig. 2b)—in
onstraining behavioural model parameters that represent realistic
verage conditions at the Panola hillslope. For, having accom-
lished this, we will subsequently hold these values constant as we
ary other physical characteristics of the hillslope and investigate
he outcomes of doing so, in Sections 4.2 and 4.3.

In order to determine appropriate behavioural model param-
ters, we ran the model on a grid of parameter values, with
ntecedent moisture deficits ranging from 0.01 to 0.20, by 0.01,
nd loss rates ranging from 0.00 to 0.95, by 0.05. From this grid of
esults, we constrained a primary set of behavioural parameters by
rst requiring the uncertainty in their rainfall threshold (for pro-
ucing at least 1 mm of trenchflow, as per Tromp-van Meerveld and
cDonnell, 2006a) to fall within the 45–55 mm precipitation input

ange.
Fig. 4a is a contour graph (with contour lines drawn at 10 mm

ncrements) of cumulative runoff at 100 mm of precipitation,
odelled on a grid of parameter values with the sub-range of

ehavioural parameters displayed as red and blue dots. The black
’s on this graph show parameter values that resulted in significant
unoff before 45 mm of precipitation, and the white x’s indicate the

ange of parameters where there was no significant runoff even
fter 55 mm of precipitation. The black region in Fig. 4a above the
hite x’s shows events with less than 1 mm of runoff at 100 mm of
recipitation.
tecedent moisture deficit is low (SMD = 0.02, shown in blue) and high (SMD = 0.15,
high SMD were chosen so that the threshold would be roughly as observed at the
eader is referred to the web version of this article.)

The red and blue dots in Fig. 4a indicate a wedge in parame-
ter space through which higher moisture deficits are compensated
by decreased loss rates, and vice versa, to produce an appropri-
ate runoff threshold. Furthermore, the contour graph indicates that
the cumulative runoff, along with the threshold, is similar for all
events within this wedge. This is shown more clearly in the com-
plementary cumulative rainfall-runoff plot in Fig. 4b, onto which
the observational data from Fig. 2a have been superimposed. The
overlapping uncertainty bounds displayed there with the same
colour-coding, were determined from the standard deviation in
runoff throughout each set of 25 realisations.

Fig. 4b shows the measured Panola data plotted against the
modelled range. Indeed, the majority of observations—aside from
those which obviously fall outside our 45–55 mm rainfall thresh-
old specification (such as a 91.7 mm event in which only 0.1 mm of
trenchflow was observed, or an event which already had 12.5 mm
of trenchflow with only 55.6 mm of rainfall) all fell within the limits
defined by the larger red set. This larger wedge in parameter space
was further constrained to only the events with wet initial condi-
tions (shown in blue in Fig. 4a and b), up to a maximum antecedent
moisture deficit of 0.07. Finally, from this set we chose the median
antecedent soil moisture deficit and loss rate parameters, 0.06 and
0.7, respectively, for subsequent use in our analysis.

4.2. The effects of varying hillslope angle on runoff characteristics

Following our initial model calibration, we began the virtual
experiments by increasing and decreasing the slope angle of the

Panola hillslope while holding parameter values and all other pro-
cess controls constant. The threshold and cumulative runoff values
we obtained as functions of hillslope angle �, indicate that the
real hillslope (at an angle of 13.1◦) sheds water more efficiently
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Fig. 4. (a) Runoff at 100 mm precipitation is shown by contours at intervals of 10 mm over the parameter range modelled; and (b) runoff as a function of precipitation for
behavioural models with threshold uncertainties in the 45–55 mm range, compared with observational data from Fig. 2a. Behavioural model outputs and parameters are
shown in red, along with a blue subset of low antecedent moisture deficit realisations, and finally the median parameter set, used in our subsequent analysis, is shown in
cyan. Parameters marked by a black x produced runoff too early, and those with a white x produced more than 1 mm of runoff only after 55 mm. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Variation of (a) cumulative runoff at 100 mm of precipitation, (b) rainfall threshold, (c) saturation frequency, and (b) flowpath depth, with changing hillslope angle
� for Panola. There is a peak in the amount of runoff (a), along with a threshold minimum (b), corresponding roughly to the real hillslope angle of 13.1◦ , while saturation
frequency and flowpath depth monotonically decrease with increasing �. Runoff ratio has the same form as cumulative runoff, and is therefore not displayed; and delivery
halflength, which depends only on the soil depth map, is constant at 0.57.

Fig. 6. Maps of fractional saturation frequency across the hillslope (dimensions in metres), averaged over the course of 100 mm precipitation events for model realisations
at rotated hillslope angles (as indicated above each plot).
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Fig. 7. Ten of the 100 soil depth maps used in investigating the effects of chan

han when its slope angle is increased or decreased (Fig. 5). The
eason for this is shown by comparing these results to the spa-
ial maps of saturation frequency (Fig. 6). There, it can be seen
hat when slope angle is very low, water mostly ponds in very
arge depressions. As the slope is increased these ponded areas
ecrease in size and the slope becomes increasingly well drained
s a dendritic network of major flow lines emerges. If the slope
ngle is increased further, those major flow lines disappear, as the
iagonalised gradients of the natural flow network are eventually
rased (at �>

˜
40◦) and the gradient at each point is directed straight

ownhill.
Evidently, it is through these main ribbons of mobile flow that

ptimise the connectivity of each point on the hillslope to the out-
et, that water is most efficiently shed from the hillslope. In contrast,
t greater slope angles when the gradient is everywhere directed
traight downhill, each column of cells across the hillslope needs
o “build its own road” to the outlet, since the water never con-
ects with a major flow line. These findings amplify Hopp and
cDonnell’s (2009) analysis of four specific slope angles chosen

or their physics-based simulations. The present work with our
irected percolation model, which could be run at increments of
◦, reveals the inflection points in Fig. 5a and b at � ≈ 13◦.

We found a monotonic decrease in saturation frequency with
ncreasing slope angle (Fig. 5c). Fig. 6 explores this further, and
hows that at low slope angles, water pools in large depres-
ions. As the slope angle increases, water continues to be diverted
long the main flow lines, which remain saturated throughout
ost of the event and therefore keep the average high. Nev-

rtheless, the saturation frequency does decrease because the

iverted water no longer ponds in large depressions, but runs
ff. When the slope angle is increased even further, the orga-
ised, mobile ribbons of flow disappear and the average saturation
ecreases.
elivery patterns to the bedrock, as well as changes to the bedrock topography.

4.3. The effects of varying soil depth and bedrock topography on
runoff characteristics

One hundred maps of varying soil depth were generated, all with
roughly the same mean (0.63 m) and standard deviation (0.35 m)
as the actual Panola hillslope soil map. We used a fractal landscape
generator based on the diamond-square algorithm of Fournier
et al. (1982) which produced statistically similar overall soil depth
patterns, despite having very different localised depth details. To
ensure a consistent range of soil depths, we hand-picked nine val-
ues from the actual soil depth map and placed them randomly
around the grid to act as seeds for the algorithm in each of the
hundred realisations. Our algorithm then ran around the rectangu-
lar grid much as it does in the original diamond-square algorithm,
using the four nearest generated or seed depths in calculating soil
depth at each point. We found that a Hurst exponent of 0.8 consis-
tently produced a similar distribution of soil depths, with roughly
the same average and standard deviation as the actual soil depth
map.

A sample of ten of these maps is shown in Fig. 7. We defined
a “delivery halflength” (see earlier discussion in Section 3.2) as
the upslope halfway point of the delivery cumulative distribution
function (calculated from the delivery PDF). As expected from a
random landscape generator, this delivery halflength fit a normal
distribution with a mean of 0.5 (Fig. 8).

Since it would be impractical to examine visually the detailed
saturation patterns resulting from 100 different delivery patterns
(as we did for a sample of rotated hillslopes, in Fig. 6), we attempted
to characterise the process through the six parameters discussed in

Section 3.2. The variance in these parameters was considered in two
separate cases: (i) without changing the actual bedrock topography
underneath the soil, so as to assess the effect of changing only the
detailed pattern of delivery to the flow layer; and (ii) by subtracting
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Fig. 8. The delivery halflengths of the 100 randomly generated soil depth maps
used in this study are normally distributed about the hillslope’s halfway point, with
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standard deviation of 0.15. A Shapiro–Wilk test does not rule out the hypothesis
hat the sample of delivery halflengths is normally distributed.

he soil depth maps from Panola’s surface topography, in order to
enerate a synthetic bedrock topography and compare the results
y subtracting them from the results found in the first case. This
nabled us to assess the effects of randomly varying the topography
n 100 cases where the detailed delivery pattern was the same.

Fig. 9 shows the effects of delivery pattern alteration on all five
arameters (graphs a–e) and the effects when bedrock topography
as varied (graphs f–j). When the detailed delivery pattern alone
as varied, even though the 100 different delivery patterns used
ere statistically similar overall, we found significant variation in
ll five parameters. All but the runoff ratio values resembled a nor-
al distribution, with tails extending out as far as 40% from each
ean value; e.g., the cumulative runoff from 100 mm precipitation

ig. 9. Variation in the five parameter values for the 100 different soil depth maps used. T
he bedrock topography remained unchanged and only the soil depth varied, and the frequ
edrock topography was changed for each of the 100 delivery patterns. These results indic
owpath development and runoff characteristics (e.g., runoff varied by 9 mm, and thresh
haracteristics of the distributions were the same); and that the actual bedrock topograph
f delivery pattern—as there is more cumulative runoff, lower threshold, etc., in the form
Modelling 298 (2015) 64–74

events ranged from 8 to 17 mm, and the thresholds range from 25
to 55 mm.

Beyond the notable dependence on the specific details of the soil
depth distribution, the natural bedrock topography consistently
shed more water than the synthetically generated surfaces, regard-
less of delivery pattern. Only rarely did more water run off of the
synthetic flow layers, or with a greater ratio, than what ran off of
the flow layer that has been developed naturally.

This result is consistent with what we found by varying the hill-
slope angle—suggesting that hydrogeomorphic evolution has led
to the formation of “water access channels” on the natural bedrock
surface that carry water most efficiently from the hillslope. This is
evident from the fact that significantly more (normally distributed
with mean 1.9 mm and standard deviation 1.3 mm) runoff occurs,
and at a significantly greater ratio (normal with mean difference
0.024 and standard deviation 0.018); but also in the fact that the
natural bedrock surface is always less saturated, and the flowpath
depth (which effectively indicates transit time) is always less, even
though the delivery patterns were the same in each of the 100
simulations we ran and compared.

Our results suggest that variations in delivery pattern and
bedrock topography both significantly influence subsurface flow
and runoff characteristics. While we do not know the hydrogeo-
morphic evolution of the actual bedrock surface, we hypothesise
that the existing drainage structure would pre-date the formation
of soil (Heimsath et al., 1999) and reflect embryonic drainage evo-
lution of the bare rock surface. Such drainage evolution (with and
without soil) is a key topic in network ecohydrology today (Band
et al., 2014) and something that perhaps future work with directed
percolation could explore.

It is also useful to consider whether there is any significant inter-
action between our different parameters—such as, e.g., whether
the delivery halflength is low (so that most of the water is deliv-
ered in the bottom half of the hillslope), or whether flowpath depth
(which is meant to indicate transit time) is correlated with runoff

he graphs in the top row show the frequency distribution of each parameter when
ency distributions in the bottom row show how each parameter changed when the
ate both—that changes to the delivery pattern significantly influence the dynamical
old by 30 mm, as a result of changing the delivery pattern, even though the general
y consistently sheds water more efficiently than the synthetic surfaces, regardless

er case.
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Fig. 10. Fifteen correlation patterns between our six parameters, in the cases where soil is laid on top of the actual Panola bedrock (red) and when the randomly generated
soil depth map is subtracted from the Panola surface topography, producing a synthetic flow layer (black). Lines were fit using weights (not shown) depending on the
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tandard deviation in the mean value of each parameter from 25 model realisations,
alculated from the soil depth map. The values of Pearson’s product–moment corr
olour in this figure legend, the reader is referred to the web version of this article.)

hreshold. The 15 different correlation patterns between the val-
es of our six parameters are shown in Fig. 10, for both cases (i.e.,
elivery to both real and synthetic bedrock topographies).

The delivery halflength was weakly correlated with the other
ve parameters, which is an indication of the complexity of
he runoff generation process (e.g., since we might naively have
xpected a tighter correlation with threshold than there is in
ig. 10a). In fact, it is somewhat surprising that the delivery
alflength was not correlated at all with runoff (Fig. 10f); therefore,
s much runoff may be generated when the soil is thin at the upper
illslope sections, as when it is thin at the base of the hillslope.

There was significant negative correlation between runoff and
hreshold, as expected (if runoff begins early, there will typically
e more of it in a 100 mm event; see Fig. 10d), as well as significant
ositive correlation between runoff and runoff ratio (if more runoff
as generated, it likely occurred at a greater rate; see Fig. 10i); how-

ver, there was no correlation between runoff ratio and threshold
Fig. 10e), so the rate at which water ran off did not depend on when
he rainfall threshold was reached.

The strongest measured correlation was between threshold
nd flowpath depth (Fig. 10c), which was meant to provide

n indication of transit time (Asano and Uchida, 2012). Evi-
ently, the requirement for water to percolate laterally through
eep soil is a dominant factor on determining when the rainfall
hreshold will be reached. Indeed, the correlation between these
t in the case of delivery halflength, which is a precise fraction of the hillslope length
coefficient are also shown on each graph. (For interpretation of the references to

two parameters is so high that they interact similarly with all
others.

Finally, the interactions with saturation frequency (Fig. 10b, g,
l, m, o) were peculiar. Saturation frequency was significantly pos-
itively correlated with runoff and runoff ratio, so the events that
produced the most runoff also had the greatest average spatial
saturation over the course of an event. However, the saturation fre-
quency was also consistently greater for delivery to the synthetic
surfaces, which we know shed water less efficiently than the natu-
ral bedrock topography (cf. Fig. 9f–j, and surrounding text). These
seemingly contradictory points were likely due to contrasting
effects: greater saturation frequency seems to be associated with
the development of major flowlines, or organised flow ribbons that
remain saturated throughout the event and skew the average; but
topographic inefficiency may lead to the retention of water that
does not connect up with a major flow network. The indication
is that the dynamical system may be too complex to be accu-
rately represented by a single spatial and temporal average—and
the implication is that the modeller should be careful not to over-
simplify the problem with too much averaging.
5. Summary and future outlook

We were able to reproduce the observed Panola hillslope runoff
threshold at 55 mm of cumulative precipitation with directed
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ercolation theory. Unlike a deterministic approach where we have
hown similar capabilities (Hopp and McDonnell, 2009; James et al.,
010), directed percolation is a rules based, ensemble approach
hat captures the broad process brushstrokes of the highly het-
rogeneous, dynamically developing flow network throughout the
ourse of a storm event. Such a description is appealing because
unoff itself is highly stochastic. For instance, if we examine
he saturation patch data for the Panola hillslope as presented
y Tromp-van Meerveld and McDonnell (2006b), there is hith-
rto unrecognised spatial variation in patch saturation locations
hrough a series of progressively larger storms. In other words, the
atches that are saturated are not fixed—rather, they appear to have
he same overall form, but the detailed pattern changes slightly
rom event to event.

Our directed percolation approach showed that typical runoff
haracteristics for the Panola slope corresponded to antecedent soil
oisture deficit and loss rates of 0.06 and 0.7, respectively—i.e.,
e found that in a typical storm at Panola, rain amounting to 6%

f the soil’s depth would be required before any would percolate
hrough to the bedrock, and 70% would actually be lost to deeper
roundwater through further infiltration into the bedrock.

Holding these values constant, we then examined the effects
f randomly changing the soil depth map, and therefore the het-
rogeneous delivery pattern to the lateral flow layer. We found
ide variation in the system’s response even when these delivery
atterns had the same statistical properties. Perhaps more surpris-

ngly, we found that the upslope distance of delivery of rainwater
hrough the soil was correlated only very weakly with the rain-
all threshold for runoff generation. It was not correlated at all with
he actual amount of runoff that the hillslope would produce. These
esults indicate that the detailed pattern of delivery of rainwater to
he soil-bedrock interface leads to a complex dynamical response
hat should be accounted for in order to accurately describe and
redict runoff at the hillslope scale.

As a complement to our analysis of varying soil depths, we also
odelled the effects of changing the bedrock topography, both ran-

omly and simply by altering the slope angle. We found evidence in
oth cases of evolutionary efficiency in the current branching flow
attern that develops at the hillslope scale. Directed percolation
ould be a useful tool for examining such hillslope geomorpholog-
cal processes in future studies.
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