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Stream runoff is perhaps the most poorly represented
process in ecohydrological stochastic soil moisture
models. Here we present a rainfall-runoff model with
a new stochastic description of runoff linked to soil
moisture dynamics. We describe the rainfall-runoff
system as the joint probability density function (PDF)
of rainfall, soil moisture and runoff forced by random,
instantaneous jumps of rainfall. We develop a master
equation for the soil moisture PDF that accounts
explicitly for a general state-dependent rainfall-runoff
transformation. This framework is then used to derive
the joint rainfall-runoff and soil moisture-runoff PDFs.
Runoff is initiated by a soil moisture threshold and a
linear progressive partitioning of rainfall based on the
soil moisture status. We explore the dependence of the
PDFs on the rainfall occurrence PDF (homogeneous
or state-dependent Poisson process) and the rainfall
magnitude PDF (exponential or mixed-exponential
distribution). We calibrate the model to 63 years
of rainfall and runoff data from the Upper Little
Tennessee watershed (USA) and show how the new
model can reproduce the measured runoff PDF.

1. Introduction
Runoff is perhaps the most poorly represented process
in ecohydrological stochastic soil moisture models [1].

2015 The Author(s) Published by the Royal Society. All rights reserved.
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This is a problem because runoff from extreme rainfall-runoff events creates average annual losses
in excess of $2.6 billion in the United States alone [2]. The frequency of such extreme events
increased in the twentieth century and this trend is predicted to continue in the twenty-first
century [3,4].

The quantitative description of runoff remains a challenge because of nonlinearities (e.g.
thresholds) in the watershed rainfall-runoff response. Further, landscape heterogeneities and the
spatial and temporal randomness of multiple hydrologic states make prediction extraordinarily
difficult [5,6]. Many attempts have been made to address these challenges, which generally
involve detailed modelling of small-scale processes and explicit mapping of watershed
heterogeneities (e.g. [7–10]). However, these approaches often require a large number of model
parameters, leading to the problem of model over-parameterization. Most models are therefore
highly calibrated to compensate for a lack of understanding of the actual watershed processes
[5,11]. As multiple sets of different parameter values may yield the same model calibration
result, these models have a high degree of predictive uncertainty that can result in fundamental
misrepresentations of the runoff processes [5,12].

Soil moisture and its spatial and temporal variability have been recognized as primary
factors controlling runoff variability (e.g. [6,13,14]). Watershed soil moisture dynamics represent
a complex spatio-temporal stochastic process that responds to stochastic rainfall forcing,
evapotranspiration and other deterministic losses, as well as soil type and land cover, all of
which may be heterogeneous in space [15,16]. Previous descriptions of runoff variability have
included some combination of stochastic rainfall, the spatial statistics of soil storage capacity
or soil moisture dynamics [17–20]. However, these models have been limited to one type of
runoff transformation, such as infiltration excess overland flow described by the Philip equation
(e.g. [17,18]) or saturation excess overland flow (e.g. [19,20]). Further, stochastic soil moisture
models have been applied primarily at the point scale without an explicit description of the runoff
statistics [19,21,22]. For different spatial scales and runoff transformations, a grand challenge is
to characterize the effect of multiple soil moisture states on runoff production and, thus, to find
the joint probability density functions (PDFs) of soil moisture and runoff as well as rainfall and
runoff. The joint PDF of runoff and soil moisture and the marginal runoff PDF, dependent on the
magnitude of soil moisture fluxes, present a potentially efficient means of understanding how
runoff variability is affected by seasonal, intra-annual and inter-annual changes in soil moisture
fluxes such as evapotranspiration or rainfall.

Here we develop a framework to find PDFs of runoff (including joint PDFs of runoff
and soil moisture) that characterize the effect of multiple soil moisture states on runoff
variability. The framework is general to any rainfall-runoff transformation function and
builds upon the stochastic soil moisture model of [19,21–23]. We develop a general function
to represent the rainfall-runoff transformation, which was previously fixed as the rainfall
excess over an upper soil moisture threshold (e.g. [19,23,24]). The model is developed for a
spatially uniform soil reservoir that can be approximated by a homogeneous runoff response.
A further generalization to the spatial distribution of runoff generation will be presented
elsewhere [25].

The paper starts by defining the soil moisture balance for a general rainfall-runoff
transformation. We then present a new procedure to find the PDFs of runoff and soil moisture
(both antecedent and posterior to a rainfall event). For these PDFs, we then discuss the system
crossing properties, which, in turn, are the basis of the forward equation for the soil moisture PDF.
In §3, we introduce a specific rainfall-runoff transformation, defined as a soil moisture-dependent
fraction of each rainfall event, which describes the saturation threshold complimented by the
progressive partitioning of rainfall into runoff and infiltration. We compare and contrast model
results for rainfall arrivals described by a homogeneous or non-homogeneous Poisson process
and for different rainfall depth distributions, i.e. either exponential or mixed-exponential. Finally,
we evaluate the framework against 63 years of streamflow data from the Upper Little Tennessee
River watershed, USA.
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2. Soil moisture and runoff model
We begin with an area where the soil is considered as a spatially uniform reservoir, with a
vertically averaged soil porosity (i.e. volume of voids/volume of soil), n, rooting depth, Zr,
and dimensionless state variable of relative soil moisture, s. The soil reservoir, with a maximum
storage capacity of nZr, is intermittently filled by random pulses of rainfall and emptied by losses
due to evapotranspiration and runoff. Later in §4, we consider stormflow runoff to be generated
from a spatially uniform soil reservoir that occupies a fraction of the watershed area.

The unit area soil water storage may be described by an effective soil moisture given by

x = s − sw

s1 − sw
, (2.1)

where sw is the soil moisture at the plant wilting point, s1 is the upper bound of the effective
reservoir beyond which rainfall inputs are rapidly lost to runoff and s varies between sw and s1.
The soil moisture terms s, sw and s1 represent vertically averaged values over the root zone. The
maximum capacity of the effective soil water reservoir is

w0 = (s1 − sw)nZr, (2.2)

and the soil water storage typically available to plants is given by x · w0.
The temporal dynamics of the effective soil moisture, x(t), follow the differential balance

equation [19,21,22,26]

w0
dx
dt

= −F[x(t)] + R(t) − H[x(t)], (2.3)

where F[x(t)] (F[x(t)] ≥ 0) represents continuous evapotranspiration and slow leakage losses, R(t)
is the rainfall input and H[x(t)] represents runoff. Equation (2.3) is assumed to operate at the daily
time scale, such that R(t) and H[x(t)] can be assumed to be instantaneous. Consequently, rainfall
events are modelled as a stochastic arrival process, with time increments and rainfall depths
described by appropriate PDFs to be introduced later. In this paper, differently from previous
stochastic soil moisture models, runoff losses are modelled with a general function H[x(t)] that
represents any rapid, episodic loss of water at the soil surface or subsurface. The runoff loss,
H, and continuous loss, F, normalized by the maximum storage depth, w0, are indicated by the
variables h and f , respectively.

(a) Distributions of runoff and soil moisture
The rainfall-runoff system can be described by the joint PDF of runoff, rainfall and the soil
moisture before (antecedent, x−) and after (posterior, x+) a rainfall event, i.e.

phx+zx− (h, x+, z, x−; t) = phx+|z,x− (h, x+|z, x−)pzx− (z, x−; t), (2.4)

where z = R/w0 is the normalized rainfall depth. The joint PDF of equation (2.4) is found by
defining the conditional PDF, phx+|z,x− (h, x+|z, x−), and the joint PDF, pzx− (z, x−; t).

The normalized runoff is assumed to be a deterministic function of z and x−, i.e.

h = h(z, x−). (2.5)

It follows that the normalized infiltration depth (i.e. rainfall not lost to runoff) is y = z − h(z, x−),
and x− jumps by this amount to the posterior soil moisture x+, i.e.

x+ = x− + (z − h(z, x−)). (2.6)
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Because of the deterministic relationship that h and x+ have with z and x−, the joint PDF
phx+|zx− (h, x+|z, x−) is a point mass of probability indicated by Dirac delta functions, δ(·), and can
be written as

phx+|zx− (h, x+|z, x−) = δ(h(z, x−) − h)δ(x− + z − h(z, x−) − x+), (2.7)

where δ(h(z, x−) − h) is the conditional PDF ph|z,x− (h|z, x−) derived from equation (2.5), while
δ(x− + z − h(z, x−) − x+) is the conditional PDF px+|z,x− (x+|z, x−) derived from equation (2.6).
In contrast to a continuous distribution, a point mass indicates that only one value is possible
for a given z and x−. Thus, equation (2.7) states that with probability 1, h and x+ take the values
of the r.h.s. of equations (2.5) and (2.6), respectively.

The joint PDF pzx− (z, x−; t) represents the variability of z and x− for multiple realizations
of rainfall events. Here, we reasonably assume that the two random variables are statistically
independent and, therefore, the joint PDF is the product

pzx− (z, x−; t) = pz(z)px− (x−; t), (2.8)

where px− (x−; t) is the PDF of antecedent soil moisture. Equations (2.7) and (2.8) allow us to
rewrite equation (2.4) as

phx+zx− (h, x+, z, x−; t) = δ(h(z, x−) − h)δ(x− + z − h(z, x−) − x+)pz(z)px− (x−; t), (2.9)

which describes the probability density of the entire rainfall-runoff system.
From the rainfall-runoff joint PDF of equation (2.9), the PDFs for h and x+ are

ph(h; t) =
∫ 1

0

∫∞

0

∫ 1

x−
phx+zx− (h, x+, z, x−; t) dx+dz dx−, (2.10)

and

px+ (x+; t) =
∫ 1

0

∫∞

0

∫∞

0
phx+zx− (h, x+, z, x−; t) dh dz dx−, (2.11)

respectively, where integration over the delta functions δ(·) is performed using the property
presented in appendix A. Both equations (2.10) and (2.11) are an extension of an alternative form
of the change of variables theorem (e.g. [27–29]).

(b) Crossing properties and master equation
Having described the soil moisture and runoff process during a single jump event, we
now focus on the entire dynamics of the soil moisture time series trajectory described by
equation (2.3). The soil moisture, x, increases from x− along a discontinuous trajectory, i.e.
a jump of storm infiltration, and then decreases along a continuous trajectory because of
evapotranspiration/leakage. The probability of soil moisture, x, depends on the frequency a
trajectory of soil moisture crosses the level x from either evapotranspiration/leakage abstraction
(downcrossing) or infiltration inputs (upcrossing, see figure 2). The balance between these
upcrossing and downcrossing frequencies may form the basis for constructing the master
equation (i.e. the Chapman–Kolmogorov forward equation) describing the evolution of the soil
moisture PDF, px(x; t).

To derive the master equation, we start with the upcrossing frequency, an expression of which
follows from linking the distribution of antecedent values px− (x; t) to the soil moisture distribution
px(x; t). The two may be linked for a non-homogeneous Poisson arrival process of rainfall, with
an arrival frequency of λ(x; t). For such a process, we consider the trajectories of the system (see
figure 2) over a time interval (t, t + dt), noting that the variable x− represents only the values of
x from which a jump trajectory starts. For the interval (t, t + dt), the probability of being in an
infinitesimal interval (x, x + dx) conditional on a jump occurrence, i.e. px− (x; t) dx, equals the joint
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probability of being in (x, x + dx) and jumping, i.e. λ(x; t)px(x; t) dx dt, divided by the probability
of jumping independent of the level x, i.e. 〈λ(t)〉 dt; this expression is [30]

px− (x; t) = λ(x; t)px(x; t)
〈λ(t)〉 , (2.12)

where the average jump frequency is

〈λ(t)〉 =
∫ 1

0
λ(x; t)px(x; t) dx. (2.13)

When the jump arrival process is a homogeneous Poisson process, the random jumps occur
independently at the constant frequency of λ(x; t) = λo, and the PDF of antecedent soil moisture
px− (x; t) equals the PDF of soil moisture px(x; t).

Based on equation (2.12), the frequency of jumps from an antecedent value less than x may be
written as

〈λ(t)〉Px− (x; t) =
∫ x

0
λ(u; t)px(u; t) du, (2.14)

where Px− (x; t) = ∫x
0 px− (u; t) du is the cumulative distribution function (CDF). The jumps from

these antecedent values may end at any posterior value (see figure 2), but the frequency at which
these jumps end at a posterior value below x and so do not cross x is given by

〈λ(t)〉Px+ (x; t), (2.15)

where Px+ (x; t) = ∫x
0 px+ (u; t) du is the CDF. Thus, subtracting the frequency of not crossing x, i.e.

〈λ(t)〉Px+ (x; t), from the frequency of jumps starting from below x, i.e. 〈λ(t)〉Px− (x; t), retrieves the
upcrossing frequency of x, i.e.

J↑(x; t) = 〈λ(t)〉(Px− (x; t) − Px+ (x; t)), (2.16)

which is the average jump frequency 〈λ(t)〉 multiplied by the probability of upcrossing x. Note that
for negative jumps, the opposite is true, and that the downcrossing frequency for a generic level x
is J↓(x; t) = 〈λ(t)〉(Px+ (x; t) − Px− (x; t)). The upcrossing frequency of equation (2.16) may finally be
written in terms of the soil moisture PDF by substituting for the posterior PDF of equation (2.11)
and using equation (2.12) to write px− (x; t) in terms of px(x; t), i.e.

J↑(x; t) =
∫ x

0
λ(u; t)px(u; t) du −

∫ x

0

∫u

0

∫∞

0

∫∞

0
phx+z|x− (h, u, z|x−)λ(x−; t)px(x−; t) dh dz dx− du, (2.17)

where the conditional distribution phx+z|x− (h, x+, z|x−) is

phx+z|x− (h, x+, z|x−) = δ(h(z, x−) − h)δ(x− + z − h(z, x−) − x+)pz(z). (2.18)

The soil moisture trajectories (see figure 2) downcross a level x due to the deterministic loss
function f (x). The frequency of downcrossing is equal to the fraction of time spent by the process
between x and x + dx, i.e. px(x; t) dx, divided by the time spent during a single downcrossing,
i.e. dx/f (x), which gives [23,24,31]

J↓(x; t) = f (x)px(x; t). (2.19)

Taken together, the crossing frequencies of equations (2.16) and (2.19) constitute the probability
current J(x; t), which represents the flux of probability passing through a boundary per unit time.
In our case, the probability current J(x; t) is the net frequency of crossing a level (or boundary) x,
and thus equals the rate of change of the soil moisture CDF, i.e.

∂

∂t
Px(x; t) = −J(x; t) = J↓(x; t) − J↑(x; t). (2.20)
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By substituting equations (2.17) and (2.19) for the crossing frequencies into equation (2.20) and
differentiating with respect to x, the general master equation for the probability density of the
process is obtained as

∂

∂t
px(x; t) = ∂

∂x
[f (x)px(x; t)] − λ(x; t)px(x; t)

+
∫ x

0

∫∞

0

∫∞

0
phx+z|x− (h, x, z|x−)λ(x−; t)px(x−; t) dh dz dx−. (2.21)

The three terms on the right-hand side, respectively, represent the contributions of probability
density due to the soil moisture drift function f (x), losses due to the jumps of infiltration, and
gains due to the jumps of infiltration. Note the correspondence of equation (2.21) with equation
(2.3), i.e. the first term represents the change due to evapotranspiration and slow leakage and
the second and third terms together represent the change due to infiltration, which includes the
general runoff transformation (see equation (2.18)).

The master equation (2.21) is general to both bounded and unbounded systems. In the case
of soil moisture, the system is bounded by the reflecting barrier of soil saturation, i.e. x = 1.
Immediately before the bound, the upcrossing and downcrossing frequencies must be equal, i.e.

J↓(1; t) = J↑(1; t), (2.22)

where x = 1 refers to the end of the open interval [0, 1). In terms of the crossing frequencies of
equations (2.17) and (2.19), equation (2.22) is

f (1)px(1; t) =
∫ 1

0
λ(u; t)px(u; t) du

−
∫ 1

0

∫u

0

∫∞

0

∫∞

0
phx+z|x− (h, u, z|x−)λ(x−; t)px(x−; t) dh dz dx− du. (2.23)

An explicit example of this equation will be discussed in §3. The first term of the right-hand side
of equation (2.23) is the average jump frequency 〈λ(t)〉 (see equation (2.13)), whereas the second
term is 〈λ(t)〉 multiplied by the probability of not reaching posterior soil saturation Px+ (x < 1; t),
and so

f (1)px(1; t) = 〈λ(t)〉(1 − Px+ (x < 1; t)), (2.24)

where (1 − Px+ (x < 1; t)) is the probability of soil saturation. Therefore, before the saturation
bound, the downcrossing frequency of f (1)px(1; t) is equivalent to the average frequency of
jumping to soil saturation, i.e. 〈λ(t)〉(1 − Px+ (x < 1; t)).

Equation (2.21) is a specific version of the general master equation which is usually written in
terms of transition probabilities per unit time (e.g. [32,33]). To introduce transition probabilities
here, consider that the second term on the right-hand side of equation (2.21) is equivalent to the
general term for a jump away from the state x, i.e.

λ(x; t)px(x; t) = px(x; t)
∫ 1

0
W(u|x; t) du, (2.25)

where W(u|x; t) is the transition probability density per unit time for a transition to any state u
from state x, while the third term is equivalent to the general term for a jump to the state x, i.e.

∫ x

0

∫∞

0

∫∞

0
phx+z|x− (h, x, z|u)λ(u; t)px(u; t) dh dz du =

∫ x

0
W(x|u; t)px(u; t) du, (2.26)

 on October 2, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


7

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150389

...................................................

where W(x|u; t) is the transition probability density per unit time for a transition to the state x
from any state u. The previous expressions imply that the instantaneous transition probability
per unit time of jumping away from state x to any state u is given by

∫ 1

0
W(u|x; t) du = λ(x; t), (2.27)

which is the frequency of the non-homogeneous Poisson process, while the transition probability
density per unit time to state x from any state u is

W(x|u; t) = λ(u; t)
∫∞

0

∫∞

0
phx+z|x− (h, x, z|u) dh dz, (2.28)

which is the frequency λ(u; t) multiplied by the conditional PDF px|u(x|u), given by∫∞
0

∫∞
0 phx+z|x− (h, x, z|u) dh dz.

3. Runoff PDFs for a rainfall-runoff transformation with saturation threshold
and progressive partitioning

To analyse the general framework of the previous section, we consider a novel form for
the rainfall-runoff transformation of equation (2.5), h(z, x−), that consists of a pure threshold
partitioning at soil saturation (e.g. [23,34]) complemented by a pre-threshold progressive
partitioning where runoff increases linearly with rainfall. The pre-threshold runoff is attenuated
by a progressive partitioning fraction, β (where 0 ≤ β ≤ 1), that may gradually reduce the
frequency of saturation excess threshold runoff, i.e.

h(z, x−) = zβx− + (z(1 − βx−) − (1 − x−))Θ(z(1 − βx−) − (1 − x−)), (3.1)

where 0 ≤ h ≤ ∞ and the Heaviside step function is right continuous, i.e. Θ(0) = 1 (figure 1b).
At the saturation threshold indicated by the Heaviside step function Θ(·), runoff losses become
equivalent to the excess of rainfall, z, minus the spare capacity (1 − x−), but before the threshold,
runoff losses occur by the progressive partitioning term zβx−. The argument of the step function
describes the rainfall amount needed for soil saturation, i.e. z = (1 − x−)/(1 − βx−) (see figure 1b).
When β = 0 this rainfall amount is simply the antecedent soil storage spare capacity (1 − x−),
but as β increases, the rainfall amount required for soil saturation increases to a value greater
than (1 − x−) (see figure 1). Thus, increasing β decreases the occurrence of saturation-threshold
excess runoff.

The progressive partitioned runoff term, zβx−, represents runoff production mechanisms that
occur when the soil is not fully saturated, such as subsurface preferential flow (i.e, macropore
flow) or infiltration-excess overland flow [14,35–40]. These runoff mechanisms may depend on the
antecedent soil moisture condition, x−, or the rainfall magnitude, z [14,35,37]. As the antecedent
soil moisture increases, a series of mechanisms may allow for a greater self-organization of the
soil macropores that expands the preferential flow network and thus increases the quantity of
preferential flow runoff in the watershed [38,39]. Considering both mechanisms, the progressive
partitioning runoff increases with both the antecedent soil moisture status and the rainfall
magnitude [1,14], and the parameter β controls the maximum fraction of rainfall z partitioned
to preferential subsurface flow or infiltration-excess overland flow.

(a) Pure runoff threshold:β = 0
When β = 0, the runoff transformation of equation (3.1) reverts to the saturation excess
mechanism of [34] where runoff is partitioned by the soil saturation threshold of x = 1 (e.g. [23]).
Immediately prior to runoff, the soil moisture is at a distance (spare capacity) of 1 − x− below the
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Figure 1. Two cases of the runoff loss (black line) of equation (3.1) when antecedent soil moisture is x− = 0.3: (a) β = 0
for pure threshold partitioned runoff (black line), where the rainfall amount for threshold exceedance, z = (1 − x−), equals
the spare capacity, and (b)β 	= 0, for threshold runoff plus a linear progressive partitioned runoff (black line) of equation (3.1)
forβ = 1, where the rainfall amount for threshold exceedance, z = (1 − x−)/(1 − βx−), is greater than the spare capacity
c = 1 − x−. Infiltration, y, is shown for both cases (grey line).

saturation threshold, and runoff losses occur only when rainfall, z, exceeds this spare capacity, i.e.

h(z, x−) = (z − (1 − x−))Θ(z − (1 − x−)), (3.2)

where 0 ≤ h < ∞, and the Heaviside step function Θ(·) sets runoff equal to zero when rainfall
does not exceed the spare capacity (figure 1a). The behavior of soil moisture and runoff may
be observed in the series of trajectories in figure 2 (i.e. traces of the soil moisture state x and
runoff h). Note the two distinct cases (figure 2): when z > 1 − x−, i.e. the posterior soil moisture
is at the saturation threshold of x+ = 1, the rainfall is partitioned between infiltration and runoff,
otherwise the rainfall is partitioned as only infiltration that increases the antecedent soil moisture
to the posterior soil moisture value.

The continuous joint PDF phx+zx− (h, x+, z, x−; t) is found by substituting equation (3.2) for the
function h(z, x−) in equation (2.9), i.e.

phx+zx− (h, x+, z, x−; t) = δ((z − (1 − x−))Θ(z − (1 − x−)) − h)

× δ(x− + z − (z − (1 − x−))Θ(z − (1 − x−)) − x+)pz(z)px− (x−; t), (3.3)

where the step function represents a partitioning of the probability density for two disjoint
(mutually exclusive) events, i.e. Θ(·) = 0 and Θ(·) = 1. Each event corresponds to a different
probability density term from the right-hand side of equation (3.3), and because the events are
disjoint,

phx+zx− (h, x+, z, x−; t) =
⎧⎨
⎩

δ(h)δ(x− + z − x+)pz(z)px− (x−; t) for 0 ≤ z ≤ 1 − x−

δ(z − (1 − x−) − h)δ(1 − x+)pz(z)px− (x−; t) 1 − x− < z < ∞,
(3.4)

where the first term is for Θ(·) = 0 and the second term is for Θ(·) = 1. Since the PDF may be
integrated to a CDF, any Heaviside step functions are right continuous, i.e. Θ(0) = 1.

Following equations (2.10) and (2.11), integrating phx+zx− (h, x+, z, x−; t) over x+, x−, and z
retrieves the marginal distributions of runoff, i.e.

ph(h; t) = δ(h)
∫ 1

0

∫ x+

0
pz(z)px− (x+ − z; t) dz dx+ +

∫ h+1

h
pz(z)px− (1 + h − z; t) dz, (3.5)

and

ph(h; t) = δ(h)
∫ 1

0

∫ 1

x−
pz(x+ − x−)px− (x−; t) dx+dx− +

∫ 1

0
pz(1 + h − x−)px− (x−; t) dx−, (3.6)
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Figure 2. For the rainfall-runoff transformation of equation (3.2), examples of soil moisture time series trajectories (light grey)
where w0 = 120 mm. Soil moisture trajectories decrease according to f (x)= kx where k = 0.033 d−1 and increase due to
rainfall inputs that arrive as a homogeneous Poisson process at frequencyλo = 0.1 d−1; each rainfall event carries an amount
of water drawn from an exponential distribution with meanα = 25 mm. For a sample trajectory (bold line), examples of the
antecedent soil moisture x− and posterior soil moisture x+ are given; runoff losses of h occur when x+ = 1. The steady-state
PDFs corresponding to the time series are displayed for runoff ph (h), soil moisture px (x) and posterior soil moisture px+ (x+).
For the atoms of probability, the probability for h= 0 plus the probability for x+ = 1 equals 1.

while integrating over h, x− and z retrieves the marginal distribution of posterior soil moisture, i.e.

px+ (x+; t) =
∫ x+

0
pz(z)px− (x+ − z; t) dz + δ(1 − x+)

∫∞

0

∫ h+1

h
pz(z)px− (1 + h − z; t) dz dh, (3.7)

and

px+ (x+; t) =
∫ x+

0
pz(x+ − x−)px− (x−; t) dx− + δ(1 − x+)

∫ 1

0

∫∞

0
pz(1 + h − x−)px− (x−; t) dh dx−. (3.8)

Note that switching the order of integration of the variables results in two equivalent expressions
for the marginal PDFs of runoff and posterior soil moisture. The previous expressions are mixed
distributions; the terms with a delta function represent atoms of finite probability (either Ph(h =
0; t) or Px+ (x+ = 1; t)), while the other terms represent distributions for either runoff, h, or posterior
soil moisture, x+. When the posterior soil moisture is below saturation, runoff must be zero, and
so the discrete probability of zero runoff is equivalent to the total probability of the continuous
part of the posterior soil moisture distribution on [0, 1). Similarly, when runoff occurs, the soil is
at saturation, and so the discrete probability of posterior soil saturation is equivalent to the total
probability of the continuous part of the runoff distribution on (0, ∞) (see figure 2).

The integrands of the respective equations for each PDF are different because each represents
a different joint distribution. The PDFs of the joint distributions of runoff and rainfall, phz(h, z; t),
and posterior soil moisture and rainfall, px+z(x+, z; t), are simply equations (3.5) and (3.7) not
integrated by z, i.e.

phz(h, z; t) = δ(h)
∫ 1

z
pz(z)px− (x+ − z; t) dx+ + pz(z)px− (1 + h − z; t), (3.9)

and

px+z(x+, z; t) = pz(z)px− (x+ − z; t) + δ(1 − x+)
∫ z

(z−1)Θ(z−1)
pz(z)px− (1 + h − z; t) dh. (3.10)
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Similarly, the joint PDFs of runoff and antecedent soil moisture, phx− (h, x−; t), and posterior soil
moisture and antecedent soil moisture, px+x− (x+, x−; t), are equations (3.6) and (3.8) not integrated
by x−, i.e.

phx− (h, x−; t) = δ(h)
∫ 1

x−
pz(x+ − x−)px− (x−; t) dx+ + pz(1 + h − x−)px− (x−; t), (3.11)

and

px+x− (x+, x−; t) = pz(x+ − x−)px− (x−; t) + δ(1 − x+)
∫∞

0
pz(1 + h − x−)px− (x−; t) dh. (3.12)

For the rainfall-runoff function of equation (3.2), the general master equation for the
probability density of the process defined by equation (2.21) is

∂

∂t
px(x; t) = ∂

∂x
[f (x)px(x; t)] − λ(x; t)px(x; t) +

∫ x

0
pz(x − x−)λ(x−; t)px(x−; t) dx−

+ δ(1 − x)
∫ 1

0

∫∞

0
pz(1 + h − x−)λ(x−; t)px(x−; t) dh dx−, (3.13)

where the last two terms are the PDF px+ (x) of equation (3.7) with the antecedent PDF px− (x; t)
substituted with the expression of equation (2.12) that contains the soil moisture PDF px(x; t).
Note equation (3.13) is equally valid when the last two terms are instead represented by the
PDF px+ (x; t) of equation (3.8). The four terms on the right-hand side, respectively, represent
the contributions of probability density from the deterministic drift function f (x), losses due to
the jumps of infiltration, gains due to the jumps of infiltration and contributions from the discrete
probability of posterior soil moisture at the saturation threshold.

For continuity immediately before the bound of x = 1 on the interval [0, 1), the crossing
frequency continuity condition of equation (2.24) is equivalent to the first three terms of the right-
hand side of equation (3.13) at x = 1, but without the fourth term that exists on the bound and
outside the interval [0, 1), i.e.

f (1)px(1; t) = 〈λ(t)〉(1 − Ph(h = 0; t)). (3.14)

For the pure threshold case, the probability of a storm event producing a posterior soil moisture
below saturation Px+ (x < 1; t) is equivalent to the probability of no runoff Ph(h = 0; t). Since (1 −
Ph(h = 0; t)) is the probability of a runoff event, the downcrossing frequency from soil saturation
of f (1)px(1; t) is equivalent to the average frequency of runoff events of 〈λ(t)〉(1 − Ph(h = 0; t)).

(i) Exponential distribution of jumps with state-dependent frequency

Of the various distributions considered for the rainfall amounts, the exponential distribution is
special because of its memoryless property. For the soil moisture system, the normalized form is
given by

pz(z) = Θ(z)γ e−γ z, (3.15)

where γ = w0/α is the inverse of the average rainfall depth, α, normalized by the storage
depth, w0. Substituting this exponential jump distribution into equation (2.21), assuming λ = λ(x),
retrieves

∂

∂t
px(x; t) = ∂

∂x
[f (x)px(x; t)] − λ(x; t)px(x; t) +

∫ x

0
γ e−γ (x−x−)λ(x−; t)px(x−; t) dx−

+ δ(1 − x)
∫ 1

0

∫∞

0
γ e−γ (1+h−x−)λ(x−; t)px(x−; t) dh dx−. (3.16)

 on October 2, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


11

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150389

...................................................

The master equation of equation (3.16) coincides with the master equation formulated by [22]
when λ(x) is constant, i.e. λ(x) = λo. For steady-state conditions, the general solution for the
process bounded at x = 1 is

px(x) = Θ(x)Θ(1 − x)
C

f (x)
exp

(
−γ x +

∫
λ(u)
f (u)

du
)

, (3.17)

where Θ(·) is the Heaviside step function and C is a normalization constant (see appendix B).
An example of an explicit solution can be found for the special case of linear drift, i.e. f (x) = kx,

and linear state-dependent arrivals, i.e.

λ(x) = σx + λo, (3.18)

for which the solution is given by [41]

px(x) = Θ(x)Θ(1 − x)
C
k

xλo/k−1 e(σ/k−γ )x, (3.19)

which is a truncated gamma distribution with

C = k(γ − σ/k)λo/k

Γ (λo/k) − Γ (λo/k, γ − σ/k)
, (3.20)

where Γ (·) is the gamma function, Γ (·, ·) is the incomplete gamma function and k is a maximum
loss rate (for evapotranspiration) normalized by the storage depth w0, and λo and σ are
frequencies of rainfall arrival. The parameter σ does not alter the mathematical form of the
solution but only affects the scale parameter. For σ = 0, the solution reverts to that of [21]. Also,
note that the magnitude of k reflects the intensity of evapotranspiration for the time period of
interest and, thus, an ecohydrological control on the system. Higher evapotranspiration will shift
px(x) to lower values and consequently decrease the frequency and quantity of runoff.

Based on equation (3.17), the steady-state runoff PDF from either equations (3.5) or (3.6) is

ph(h) = Θ(h)C1γ e−γ h + C2δ(h), (3.21)

where the constant C1 is

C1 = k(γ k − σ )(γ − σ/k)λo/k eσ/k−γ

λo(σ − γ k)Γ (λo/k, γ − σ/k) − kσΓ ((k + λo)/k, γ − σ/k) + γ kλoΓ (λo/k)
, (3.22)

and C2 = 1 − C1. By the memoryless property of the exponential distribution used for rainfall, the
continuous distribution of runoff (first term of equation (3.21)) is also exponential. The steady-
state distribution of posterior soil moisture from either equations (3.7) or (3.8) is

px+ (x+) = Θ(x+)Θ(1 − x+)C1γ eγ−σ/k e(σ/k−γ )x+
(x+)λo/k + C1δ(1 − x+). (3.23)

The effect of state-dependent arrivals on the resulting distributions is explored in figure 3
by changing the value of the parameter σ in equation (3.18). For a hypothetical case where
the frequency of rainfall arrivals increases with increasing soil moisture, i.e. σ > 0, the values
of antecedent soil moisture are more likely to be greater than the values of soil moisture, as
indicated by the modes of the respective distributions px(x) and px− (x−) (figure 3a). With the
opposite condition of the frequency of rainfall arrivals decreasing with increasing soil moisture,
i.e. σ < 0, the values of antecedent soil moisture are now more likely to be less than the values
of soil moisture, as indicated by the modes of the respective distributions px(x) and px− (x−)
(figure 3b). Posterior soil moisture saturation and hence runoff are more common when rainfall
arrivals increase with increasing soil moisture (figure 3a) versus when rainfall arrivals are more
likely with decreasing soil moisture (figure 3b).

(ii) Mixed-exponential jump distribution

The shape of the jump distribution, especially the tails, significantly affects the PDFs of posterior
soil moisture and runoff losses. A mixed-exponential distribution of rainfall jumps may allow for
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Figure 3. Comparison of the PDFs of soil moisture px (x) (dashed light grey), antecedent soil moisture px− (x−) (dark grey)
and posterior soil moisture px+ (x+) (black) with an atom of probability at x+ = 1 (bar) for state-dependent rainfall arrivals.
For the same average frequency 〈λ〉 = ∫1

0 λ(x)px (x) dx = 0.1, note the two different cases: (a) an arrival frequency that
increases with soil moisture, i.e. σ = 0.205 d−1 where λo = 0.05 d−1, and (b) an arrival frequency that decreases with soil
moisture, i.e. σ = −0.135 d−1 whereλo = 0.135 d−1. The jump quantities are exponentially distributed with average depth
α = 10 mm, k = 0.033 d−1 andw0 = 120 mm.

a better overall fit to the data through multiple parameter values. These multiple parameters may
increase the strength of the tails of the distribution (e.g. [42,43]) and may capture a simultaneous
shift of probability density to smaller and larger values which could occur in the future due to
an intensification of the water cycle [3,4]. For a mixture of two exponential distributions, the
normalized form of the rainfall distribution is given by

pz(z) = Θ(z)(ω1γ1 e−γ1z + (1 − ω1)γ2 e−γ2z), (3.24)

where the weight parameters are ω1 and ω2 = 1 − ω1, γ1 = α1/w0, γ2 = α2/w0, and the average
rainfall is α = α1ω1 + α2ω2.

For a linear deterministic drift of f (x) = kx and a linear frequency of arrivals per equation (3.18),
the steady-state solution to the master equation is [44]

px(x) = Θ(x)Θ(1 − x)
C3 e(σω1/k−γ1)xxλo/k−1

k2
Γ (λoω1/k)Γ (λo(1 − ω1)/k)

Γ (λo/k)

× 1F1,
(

λo

k
(1 − ω1),

λo

k
,
(

γ1 − γ2 − σ
2ω1 − 1

k

)
x
)

, (3.25)

where C3 is the normalization constant (see appendix B). The solution is a truncated gamma
distribution modulated by a confluent hypergeometric function of the first kind, i.e. 1F1(·) [45].
In this case, it is not possible to find an analytical solution for the distributions of runoff pq(q)
and posterior soil moisture px+ (x+); however, equations (3.5) and (3.7) (or (3.6) and (3.8)) may be
integrated numerically to find these distributions.

The heavy tail of the mixed exponential distribution represents a greater likelihood of extreme
rainfall events (inset of figure 4d). For a relatively dry climate (λo = 0.1 d−1 and α = 1 cm), in
comparison to the exponential distribution, the mixed exponential distribution increases the
probability of posterior soil saturation (figure 4a) and runoff losses (figure 4b). For a wetter climate
(λo = 0.1 d−1 and α = 2.5 cm), in comparison to the exponential distribution, the heavier tailed
mixed exponential distributions lowers the probability of posterior soil moisture (figure 4c) and
runoff losses (figure 4d).

(b) Runoff threshold with a progressive partitioning:β 	= 0
For the general case of the rainfall-runoff transformation of equation (3.1) when β 	= 0, the
behaviour of soil moisture and runoff is shown in the series of trajectories in figure 5. In contrast
to the pure threshold case, runoff events occur according to a Poisson process with the same
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Figure 4. PDFs including atoms of probability at x+ = 1 and h= 0 (bars) for exponential rainfall depths (black lines) and
mixed exponential rainfall depths (grey lines) with weights ω1 = 0.05 and ω2 = 0.95 (see equation (3.24)). Two cases are
shown. For rainfall arrivals at frequency λo = 0.1 d−1 (σ = 0) with average depth of α = 10 mm, PDFs of (a) soil moisture
(dashed line) and posterior soil moisture (solid line) and (b) runoff (note for the mixed exponential distributionα1 = 65.1 mm
and α2 = 7.1 mm). For rainfall arrivals at frequency λo = 0.1 d−1 (σ = 0) with average depth of α = 25 mm, PDFs of (c)
soil moisture (dashed line) and posterior soil moisture (solid line) and (d) runoff (note for the mixed exponential distribution
α1 = 162.8 mm andα2 = 17.8 mm). Other parameters are k = 0.034 d−1 andw0 = 120 mm.

frequency as rainfall events; therefore, there is only an atom of probability for posterior soil
saturation and not for zero runoff. For each rainfall event, there are two cases (figure 5): (1) a
linear progressive partitioning of rainfall between infiltration, y, and runoff, h, when infiltration
is less than the spare capacity, 1 − x−, and (2) at soil saturation, a threshold partitioning of rainfall
into runoff where h is equal to rainfall, z, minus the spare capacity amount, 1 − x−.

The continuous joint PDF phx+zx− (h, x+, z, x−; t) is found by substituting equation (3.1) for
h(z, x−) in equation (2.9), i.e.

phx+zx− (h, x+, z, x−; t) = δ(zβx− + (z(1 − βx−) − (1 − x−))Θ(z(1 − βx−) − (1 − x−)) − h)

· δ(x− + z(1 − βx−) − (z(1 − βx−) − (1 − x−))Θ(z(1 − βx−)

− (1 − x−)) − x+)pz(z)px− (x−; t), (3.26)

where the step function represents a partitioning of the probability density for two disjoint
(mutually exclusive) events, i.e. Θ(·) = 0 and Θ(·) = 1. Each disjoint event corresponds to a
different probability density term from equation (3.26), i.e.

phx+zx− (h, x+, z, x−; t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ(zβx− − h)δ(x− + z(1 − βx−) − x+)pz(z)px− (x−; t) for 0 ≤ z ≤ 1 − x−

1 − βx−

δ(z − (1 − x−) − h)δ(1 − x+)pz(z)px− (x−; t)
1 − x−

1 − βx− < z < ∞,

(3.27)

where the first term is for Θ(·) = 0 and the second term is for Θ(·) = 1.
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Figure 5. For the rainfall-runoff transformation of equation (3.1) when the partitioning strength is β = 0.5, examples of soil
moisture times series trajectories (light grey) where w0 = 120 mm. Soil moisture trajectories decrease at the continuous rate
f (x)= kx, where k = 0.033 d−1 and increase due to rainfall inputs that arrive as a Poisson process at frequencyλo = 0.1 d−1

(σ = 0)with each event carrying an exponentially distributed amount of rainfall with the average amount beingα = 25 mm.
For a sample trajectory (bold line), examples of the antecedent soil moisture x−, posterior soil moisture x+, and runoff h are
given. The steady-state PDFs corresponding to the time series are displayed for runoff ph (h), soil moisture px (x), and posterior
soil moisture px+ (x+). Note the discrete atom of probability for x+ = 1.

Following equation (2.10), integrating the continuous joint PDF phx+zx− (h, x+, z, x−; t) of
equation (3.27) over x+, x−, and z using the properties of appendix A retrieves the runoff PDFs, i.e.

ph(h; t) =
∫ (h+1)/2+b(h)

(h+1)/2−b(h)

1
|βz|pz(z)px−

(
h
βz

; t
)

dz

+
(∫ h+1

h
pz(z)px− (1 + h − z; t) dz −

∫ (h+1)/2+b(h)

(h+1)/2−b(h)
pz(z)px− (1 + h − z; t) dz

)
, (3.28)

and

ph(h; t) =
∫ (h+1)/2+b(h)

(h+1)/2−b(h)

1
|βx−|pz

(
h

βx−

)
px− (x−; t) dx−

+
(∫ 1

0
pz(1 + h − x−)px− (x−; t) dx− −

∫ (h+1)/2+b(h)

(h+1)/2−b(h)
pz(1 + h − x−)px− (x−; t) dx−

)
, (3.29)

where b(h) =
√

(1 + h)2β − 4h/(2
√

β). For equations (3.28) and (3.29), the upper and lower bounds
of the first and third terms represent the boundary where the runoff function of equation
(3.1) transitions from progressive partitioning runoff to saturation-threshold excess runoff. This
boundary occurs when the argument of the step function of equation (3.1) becomes zero for
values of z = (1 − x−)/(1 − βx−) and x− = (1 − z)/(1 − βz), and substituting these values into
equation (3.1) results in the respective equations h = z − 1 + (1 − z)/(1 − βz) and h = x− − 1 +
(1 − x−)/(1 − βx−). These equations may be solved in terms of z or x− to find the upper
and lower bounds of equations (3.28) and (3.29), respectively, and the maximum of either
equation, i.e. h = (2 − 2

√
1 − β − β)/β, represents the maximum progressive partitioned runoff

value. Equations (3.28) and (3.29) are for the range of 0 ≤ h < ∞, where the first term represents
the progressive partitioned runoff between 0 < h < (2 − 2

√
1 − β − β)/β, while the second and

third terms collectively represent the saturation-threshold excess runoff. Note that the second

 on October 2, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


15

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150389

...................................................

term represents the region of saturation excess runoff between 0 < h < ∞ while the third
term represents the region where progressive partitioning runoff occurs between 0 < h < (2 −
2
√

1 − β − β)/β. In comparison to the pure threshold runoff PDFs of equations (3.5) and (3.6),
the first term of equations (3.28) and (3.29) that describes progressive partitioning runoff losses
before soil saturation has replaced the term for the atom of probability for zero runoff.

Following equation (2.11), integrating the joint PDF phx+zx− (h, x+, z, x−; t) over h, x− and z
retrieves the expressions for the PDFs of posterior soil moisture, i.e.

px+ (x+; t) =
∫ x+

0

1
|1 − zβ|pz(z)px−

(
1

1 − zβ
(x+ − z); t

)
dz

+ δ(1 − x+)
∫∞

0

∫ z

z−1+((1−z)/(1−βz))Θ(1−z)
pz(z)px− (1 + h − z; t) dh dz, (3.30)

and

px+ (x+; t) =
∫ x+

0

1
|1 − βx−|pz

(
1

1 − βx− (x+ − x−)
)

px− (x−; t) dx−

+ δ(1 − x+)
∫ 1

0

∫∞

x−−1+(1−x−)/(1−βx−)
pz(1 + h − x−)px(x−; t) dh dx−. (3.31)

The first term of the posterior soil moisture distribution represents the continuous PDF of
posterior soil moisture, while the second term represents the atom of probability of soil saturation.
Similar to the pure threshold case of the previous section, the PDFs of the joint distributions of
runoff and rainfall, phz(h, z; t) and posterior soil moisture and rainfall, px+z(x+, z; t), are simply
equations (3.28) and (3.30) not integrated by z, while the joint PDFs of runoff and antecedent soil
moisture, phx− (h, x−; t), and posterior soil moisture and antecedent soil moisture, px+x− (x+, x−; t),
are equations (3.29) and (3.31) not integrated by x−.

When rainfall events arrive as a homogeneous Poisson process at frequency λ(x; t) = λo (i.e. σ =
0) the general master equation (2.21) is

∂

∂t
px(x; t) = ∂

∂x
[f (x)px(x; t)] − λopx(x) + λo

∫ x

0

1
|1 − βx−|pz

(
1

1 − βx− (x − x−)
)

px(x−; t) dx−

+ λoδ(1 − x)
∫ 1

0

∫∞

x−−1+(1−x−)/(1−βx−)
pz(1 + h − x−)px(x−; t) dh dx−, (3.32)

where the last two terms are the PDF px+ (x) of equation (3.31) multiplied by the constant rate of the
homogeneous Poisson process, λo, where by equation (2.12) for a homogeneous Poisson process
px(x; t) = px− (x; t). For a mixed exponential distribution of rainfall, pz(z) (see equation (3.24)), the
steady-state master equation (3.32) is

∂

∂x
[f (x)px(x)] − λopx(x)

+ λo

∫ x

0
(ω1γ1(x−) e−γ1(x−)(x−x−) + (1 − ω1)γ1(x−) e−γ1(x−)(x−x−))px(x−) dx− = 0, (3.33)

where γ1(x−) = γ1/(1 − βx−) and γ2(x−) = γ2/(1 − βx−), and the integral term consists of the soil
moisture PDF, px(x), convolved with either the infiltration PDF py(y) = γ1(x−) e−γ1(x−)y or the
infiltration PDF py(y) = γ2(x−) e−γ2(x−)y. For linear drift, i.e. f (x) = kx, and the assumption that
γ1(x−) and γ2(x−) are independent of the convolution, i.e. the convolution dummy variable is
x∗ (see appendix B), an approximate solution can be found as (see equation (B 11) of appendix B)

px(x) = Θ(x)Θ(1 − x)
C4 e(σω1/k−γ1(x−))xxλo/k−1

k2
Γ (λoω1/k)Γ (λo(1 − ω1)/k)

Γ (λo/k)

× 1F1,
(

λo

k
(1 − ω1),

λo

k
,
(

γ1(x−) − γ2(x−) − σ
2ω1 − 1

k

)
x
)

, (3.34)
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Figure 6. For different progressive partitioning strengths of (a)β = 0.3 and (b)β = 0.7, the approximate soil moisture PDF
px (x) for the solution of equation (3.34) with γ (υ x) of equation (3.35) (dotted-dashed lines) compared against the exact
PDF constructed from a Monte Carlo simulation of the system (histogram bars). Also shown are the resulting posterior soil
moisture, px+ (x+), (solid black lines) with the discrete atom of probability that x+ = 1 (hatched bar), and runoff losses, ph(h),
(dashed lines). Rainfall arrives as ahomogeneousPoissonprocess at frequencyλo = 0.198 d−1, the rainfall quantities aremixed
exponentially distributed with averages α1 = 2.4 mm weighted by ω1 = 0.13 and α2 = 28.2 mm weighted by (1 − ω1),
the continuous soil moisture loss is f (x)= kx where k = 0.031 d−1, and w0 = 144 mm. For equation (3.35) υ = 0.43 for
β = 0.3, andυ = 0.48 forβ = 0.7.

where C4 normalizes the PDF, and the solution has a dependence on the antecedent soil moisture
value through γ (x−). Closing the solution of equation (3.34) requires approximating γ (x−) in
terms of x. For γ (x−) we assume that x− is proportional to x, i.e.

γ (x−) � γ (υ x), (3.35)

where υ is a constant fraction. Because γ (x−) is from the master equation term for λoPx+ (x) (see
equations (2.15), (2.20) and (2.21)), the relationship between x− and x is actually symbolic of a
relationship between x− and the posterior value, x+, and the linear relation of equation (3.35) is
based on the previous figures where px− (x−) roughly appears to be a linear rescaling of px+ (x+).
After substituting equation (3.35) into equation (3.34), we find the value of υ such that at the
bound of x = 1, the downcrossing frequency equals the frequency of soil saturation (see equation
(2.24)), i.e.

k · 1 · px(1) = λo

∫ 1

0

∫∞

x−−1+(1−x−)/(1−βx−)
pz(1 + h − x−)px(x−) dh dx−. (3.36)

For a mixed exponential distribution of rainfall, the solution consists of equations (3.34)
and (3.35), where for each value of β, we calculate a unique value of υ that satisfies the
boundary condition of equation (3.36). For the soil moisture PDF, px(x), we favourably compare
the approximate analytical solution of equations (3.34) and (3.35) (figure 6, dotted-dashed line)
against the exact soil moisture PDF constructed from the numerical results of a Monte Carlo
simulation (figure 6, histogram bars). The approximate solution captures the shape of the exact
PDF of the system (figure 6, histogram), but with a relatively small bias that decreases as the
value of β decreases to β = 0 where the solution becomes the exact solution of equation (3.25). The
favourable comparison to the histogram values shows that γ (υ x) is a reasonable approximation
of γ (x−).

For the solution of the soil moisture PDF of equations (3.34) and (3.35), the resulting PDFs of
posterior soil moisture px+ (x+) (black solid line) found from equation (3.30) or (3.31), and runoff
pq(q) (dashed line) found from equation (3.28) or (3.29) are shown for values of β = 0.3 and β = 0.7
(figure 6). The system reverts to the pure threshold case for a progressive partitioning strength of
β = 0. As the progressive partitioning strength increases, i.e. β increases, the infiltration input
decreases and the mode of the soil moisture and posterior soil moisture distributions shifts to
lower soil moisture values. Concurrently, there is a decrease in the discrete probability of soil
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saturation, i.e. x+ = 1 (bar), and the mode of the runoff distribution shifts to a higher value of
runoff (figure 6).

4. Stormflow response model
Streamflow can be separated into a slow baseflow component (fed by deep percolation and
groundwater) and a fast stormflow component (fed by direct runoff from the surface and shallow
soil layers). Under the assumptions of our model, h refers to stormflow with a relatively fast
response time. It is reasonable to assume that the majority of stormflow runoff is produced on
a fraction, ζ , of the total watershed area, or the so-called source area (e.g. [34,46,47]). Therefore,
stormflow, q, which is observed at the watershed scale, is the modelled runoff scaled by the source
area fraction,

q = ζh. (4.1)

Note that this assumption implies implicitly that the complementary fraction of watershed area,
1 − ζ , does not produce runoff that contributes to stormflow. For the stormflow model, we assume
that the rainfall-runoff transformation is given by equation (3.1) for β 	= 0, and thus the stormflow
PDFs are equations (3.28) and (3.29) of §3b, transformed by the change of variables technique (e.g.
[48]), which results in substituting q/ζ for h and scaling the PDFs by the factor ζ−1. We now apply
the results obtained in §3 to model observed stormflow in the Upper Little Tennessee watershed.
For the data comparison, the parameters ζ and β are calibrated and the remaining parameters are
derived from data measurements related to soil properties.

(a) Site description and stormflow separation
Daily runoff data were obtained for the Upper Little Tennessee watershed (United States
Geological Survey (USGS) gauge 03500000 near Prentiss, NC with a contributing area of 363 km2).
Daily rainfall was extracted from ‘Climate Station 01’ at the Coweeta Hydrologic Laboratory. We
used HYSEP [49,50] to separate the streamflow into baseflow and stormflow. Regional soils data
(table 1) were used to define the soil moisture loss rate, k, and the maximum water storage, w0,
which is dependent on the soil porosity, n, minimum soil moisture, sw, maximum soil moisture,
s1, and rooting depth Zr.

(b) Model validation
We compare our probabilistic model of q to 63 years of rainfall and stormflow data between 1
January 1950 and 31 December 2012 (figure 7). The data represent storm totals of rainfall and
stormflow runoff. Based on the hydrograph separation, we assume that a single storm may consist
of consecutive daily data values of rainfall and stormflow up to 3 days. The 23 011 days of data
yielded 4567 rainfall-runoff events with average unit area rainfall and runoff of 24.8 and 3.3 mm,
respectively (figure 7). The transformed §3b runoff PDFs, i.e. pq(q) = ζ−1ph(q/ζ ), require a rainfall
PDF, and we assume a mixed exponential PDF, which best fit the data (figure 8a). For the mixed
exponential PDF of rainfall, the soil moisture PDF is given by equations (3.34) and (3.35), and
the parameters are listed in table 1. Note that the mixed exponential distribution of rainfall is a
normalized version for which the parameters are γ1 = α1/w0 and γ2 = α2/w0 (see equation (3.24)
and table 1). Model calibration consists of selecting different values of β, calculating the ζ that sets
the theoretical mean runoff equal to the data mean (see table 1), and then selecting the optimal
pair of β and ζ that provide the overall best fit between the theoretical and data runoff quantiles of
figure 8b. In this case, the model calibration resulted in the lowest root mean square error (RMSE)
of 0.0068 and the highest Nash–Sutcliffe efficiency (NSE) of 0.976 between the data and theoretical
model quantiles of normalized runoff, q, where the correlation coefficient R2 is 0.99 (see figure 8b).

The joint rainfall-runoff distribution for the stormflow model, pqz(q, z), is the transformed
integrand of equation (3.28), i.e. = ζ−1phz(q/ζ , z), and this joint PDF compares favourably to
the data based on the goodness of fit between the model and data quantiles (figure 8a,b). For
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Figure 7. Rainfall and runoff data (black dots) of the Upper Little Tennessee River watershed at USGS stream gauge 03500000
with a contributing area of 363 km2. For the average soil moisture of 0.68, rainfall-runoff transformation (green, short-dashed
line) of equation (3.1) scaled by ζ and multiplied by w0, i.e. Q= w0ζ h(z, x−). The range of the runoff transformation (grey
shaded region) for±1.5 standard deviations of soil moisture, i.e. 0.40 and 0.96, respectively. Above the boundary (red, curved
long-dashed line), runoff is a threshold excess. Below the boundary, runoff results from the progressive partitioning. The
boundary (red, long-dashed line) is the lower bound of equation (3.30) scaled by ζ and multiplied by w0, i.e. Q= w0ζ (z −
1 + ((1 − z)/(1 − βz))Θ (1 − z)). For values ofβ , ζ andw0, see table 1. (Online version in colour.)

Table 1. Model parameters for the Upper Little Tennessee River watershed.

parameter value unit

rainfall frequency,λo 0.20a day−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

avg. rainfall,α1 (equation (3.24)) 2.4a,b mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

weight,ω1 (equation (3.24)) 0.13a,b —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

avg. rainfall,α2 (equation (3.24)) 28.2a,b mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

moisture loss rate, k 4.5c
w0

day−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

porosity, n 0.43e —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

max. soil moisture, s1 0.70c —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

min. soil moisture, sw 0.20c —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

root depth, Zr 690d mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

water storage,w0 (equation (2.2)) 148 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

progressive partitioning,β 0.32f —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stormflow area, ζ 0.35g —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aBased on daily rainfall data at ‘Climate Station 01’ at the Coweeta Hydrologic Laboratory.
bFrom a maximum likelihood fit of the equation (3.24) mixed exp. PDF to the rainfall data (e.g. [51]).
cValue of 4.5 mm d−1 is based on continuously measured soil moisture at four forest sites in the Coweeta basin.
dThe value for 90% root biomass according to the CDF (1 − ε0.1Zr ), where for the temperate deciduous forests of the Upper Little Tennessee
river ε = 0.967 [52].
eAverage porosity value [23, p. 24].
fValue for the best fit between the data and theoretical runoff quantiles (figure 8b) based on RMSE= 0.0068 and NSE= 0.976 where
R2 = 0.99. For thisβ ,υ = 0.433 (see equation (3.35)).
gValue where the theoretical mean, i.e. (1/ζ )

∫∞
0 qph(q/ζ ) dq, equals the mean runoff from the data.

the quantiles of the model marginal PDFs, similar data quantiles fall near the 1 : 1 line, which
indicates an exact match between the model PDFs and the data. In addition, the quantiles are
within the 95% confidence bands given by the Kolmogorov–Smirnov statistic. Both the theoretical
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bands (red, curved lines). (c) Comparison between the theoretical stormflow distribution PDF (dotted-dashed lines) and the
data distribution of stormflow (histogram bars) where (d) shows a log scale plot. (Online version in colour.)

and data distributions of runoff (figure 8c) show a high density of smaller runoff amounts that are
captured by the progressive partitioning term zβx−, while the tails of the distribution represent
larger runoff amounts from rainfall exceeding the saturation threshold of the soil (figure 8c,d).
The log plot of the stormflow distribution shows a kink near q = 0.04 (figure 8d), where the
system transitions from progressive partitioning to threshold excess runoff. Beyond this kink,
the goodness of fit in the tails shows that threshold excesses well describe runoff production in
the watershed for large runoff events except for extreme values (figure 8b,d). About six extreme
rainfall-runoff events, i.e. 0.13% of the data, significantly deviate from the model (figure 8b,d).
Since the mixed exponential distribution under represents large rainfall quantities (see figure 8a),
alternative rainfall distributions may allow the model to better represent large runoff quantities.

The high density of progressive partitioned values (figure 8c) correlates with the large number
of rainfall-runoff data clustered in the region below the theoretical boundary that defines the
maximum value of progressive partitioned runoff (figure 7, red large-dashed line). Beyond this
boundary, the rainfall-runoff transformation of equation (3.1) for average soil moisture (figure 7,
green small-dashed line) transitions to runoff production by rainfall in excess of the soil saturation
threshold. While this rainfall-runoff response has been observed at the watershed scale (e.g. [53]),
here we have given it the quantitative form of equation (3.1). This transformation of equation
(3.1), which is normalized to a watershed area basis by ζ , may be viewed as a new type of runoff
curve, i.e. it serves the same function as the SCS curve. However, here the standard deviation (SD)
of the soil moisture PDF of equation (3.34) provides the range of the transformation between wet
and dry states of soil moisture (figure 7).

The joint distributions of stormflow runoff and rainfall, pqz(q, z), and stormflow runoff and soil
moisture, pqx− (q, x−), are the respective integrands of the runoff PDFs of either equation (3.28) and
(3.29), respectively, again transformed by ζ . In both cases, the dependence structure of these joint
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Figure 9. Comparison of (a) the theoretical CDF Pq|z (q|z) of equation (4.2) (black line) and the same CDF constructed
from the data (dashed line) for different multiples of the average rainfall 〈z〉 (differences shaded in grey). For values
Ui = Pq|z (qi|zi) calculated from rainfall-runoff data (zi , qi), differences between the CDF PU (U) and a uniform distribution
(1 : 1 line, dashed) indicate differences between the theoretical anddata CDFs ofPq|z(q|z) for (b) rainfall, zi , less than the average,
〈z〉, and (c) rainfall, zi , greater than 〈z〉 = 0.17. (d) The exceedance probability conditional on the antecedent soil moisture,
1 − Pq|x− (q|x−), for different x− including the average 〈x−〉 = 0.68 (dashed line).

PDFs is set by the rainfall-runoff transformation of equation (3.1). We further compare the data to
the dependence structure in the joint PDF pqz(q, z) = pq|z(q|z)pz(z) by examining the dependency
on z for the integrand term representing the conditional distribution pq|z(q|z) that is given by

pq|z(q|z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ζ |βz|px−

(
q

ζβz

)
q < ζ

(
z − 1 + 1 − z

1 − βz
Θ(1 − z)

)

1
ζ

px−
(

1 + q
ζ

− z
)

q ≥ ζ

(
z − 1 + 1 − z

1 − βz
Θ(1 − z)

)
,

(4.2)

where px− (·) is the soil moisture PDF of equation (3.34). This distribution has a term for
progressive partitioned stormflow before the soil saturation bound indicated by ζ (z − 1 +
((1 − z)/(1 − βz))Θ(1 − z)) and a term for threshold excess loss after the saturation bound. As z
increases, both the data and theoretical CDFs of Pq|z(q|z) shift to higher values of runoff (figure 9a),
so equation (3.1) estimates the general trend of the dependence structure of the rainfall-runoff
data. For values Ui = Pq|z(qi|zi) calculated from data points (qi, zi), a CDF of PU(U) following a
uniform distribution indicates goodness of fit between the data and theoretical CDFs of Pq|z(q|z).
For rainfall greater than the average, equation (3.1) well predicts the data dependence structure
since the CDF PU(U) follows the 1 : 1 line (figure 9c). Conversely, for rainfall less than the average
(figure 9b), the model dependence structure well predicts the median runoff of the data since
the CDF PU(U) passes near the point (0.5, 0.5). While in figure 9b the dependence structure
of the model both overpredicts small runoff values (where PU(U) is above the 1 : 1 line) and
underpredicts large runoff values (where PU(U) is below the 1 : 1 line), the magnitudes of the
deviations are relatively small, as may be observed in figure 9a. For example, for z = 0.5〈z〉
(figure 9a), the difference on the q axis between the theoretical and data CDF, �q, is typically
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around �q = 0.004, which amounts to an actual runoff difference of 0.6 mm based on the w0
of table 1. For rainfall events less than the average, the correspondingly small runoff amounts
typically only deviate by a relatively small magnitude as observed on the Q–Q plot (figure 8b).
Understanding the discrepancy between the dependence structures of the model and data CDFs
(figure 9a,b,c) is a topic for future work.

(c) Antecedent soil moisture control on storm exceedance probability
Having examined the dependence structure of equation (3.1), we are now able to explore
the relation between stormflow runoff and soil moisture, which is contained in the joint PDF
pqx− (q, x−) = pq|x− (q|x−)px− (x−). This PDF is the integrand of equation (3.29) transformed by ζ ,
and the dependence on x− is described by the conditional PDF pq|x− (q|x−), i.e.

pq|x− (q|x−) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ζ |βx−|pz

(
q

ζβx−

)
q < ζ

(
x− − 1 + 1 − x−

1 − βx−

)

1
ζ

pz

(
1 + q

ζ
− x−

)
q ≥ ζ

(
x− − 1 + 1 − x−

1 − βx−

)
,

(4.3)

where for the study area, pz(·) is the mixed exponential distribution of equation (3.24). This
conditional distribution consists of a progressive partitioning term before the saturation bound
and a threshold excess term after the bound. In areas where the soil moisture is monitored, the
conditional PDF of equation (4.3) may help to assess the effect of soil moisture on the risk of storm
runoff. The increased runoff risk from an increase in the soil moisture status may be observed
through the exceedance probability, 1 − Pq|x− (q|x−), where Pq|x− (q|x−) is the CDF of equation (4.3),
and the soil moisture state is a significant control for the exceedance probability (figure 9d). For
example for q = 0.1, the probability that a storm will exceed this runoff amount is about 20% when
the antecedent soil moisture is at x− = 1, but is near 0% when the antecedent soil moisture is at
x− = 0.1 (figure 9d). Thus, the exceedance probability quantifies the increased runoff risk from
an increase in the soil moisture status, a relationship which has been observed but not concisely
characterized by previous studies (e.g. [6,54]).

5. Concluding remarks
We have presented the first probabilistic framework for determining the runoff PDFs that are
linked to a simple model of the soil moisture balance forced by stochastic rainfall. Thus, the
derived analytical forms of the joint PDFs for both runoff and rainfall, phz(h, z; t), and runoff and
antecedent soil moisture, phx− (h, x−; t), explicitly account for the effects of multiple soil moisture
states. Based on a new progressive partitioning rainfall-runoff transformation that accounts for
runoff generation in unsaturated soils, we were able to successfully apply the framework to create
a probabilistic stormflow runoff model with PDFs that reproduces the measured rainfall-runoff
response for 363 km2 of the Upper Little Tennessee River watershed. The stormflow model relies
on only two calibration parameters, the fraction of watershed area producing stormflow runoff,
ζ , and the progressive partitioning fraction, β, which controls the frequency of threshold initiated
stormflow events. While low parameter models are known for their predictability, here we have
also demonstrated their suitability for creating stochastic descriptions consisting of runoff PDFs,
including joint PDFs of rainfall and runoff as well as soil moisture and runoff. For this watershed,
the model allows an explicit link between the antecedent soil moisture state and runoff variability,
which we summarize with the stormflow runoff event return period.

The soil moisture dependence of the joint runoff PDFs paves the way for a statistical
characterization of the effect of ecohydrological processes on runoff dynamics from cumulative
threshold excesses from hillslope to watershed scales. Extending the framework to multiple soil
layers may allow for a representation of threshold initiated hillslope preferential flow, which may
contribute to stormflow for more extreme rainfall events. In addition, a better characterization of
extreme rainfall events may be achieved by different approximations of the rainfall PDF, e.g. a
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mixed PDF with a heavier tailed distribution for extreme rainfall events (e.g. Pareto PDF) that
is combined with a exponential PDF for smaller rainfall events. We anticipate that the runoff
PDFs, including the joint PDF of runoff and soil moisture, may aid in the analysis of how runoff
variability may be affected by seasonal, intra-annual, inter-annual, and climatic changes in the
ecohydrology of the soil moisture system.
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Appendix A. Dirac delta function property
When integrating equations (2.10) and (2.11), the Dirac delta functions of equation (2.9) often
cannot be evaluated explicitly using the sifting property but may be evaluated (in this case for the
variable of integration x−) with the property

δ[g(x−)] =
∑

n

1
|g′(xn)| δ(x− − xn), (A 1)

where g(x−) is the function nested within the delta function, i.e. g(x−) = h(z, x−) − h or g(x−) =
x− + z − h(z, x−) − x+, the summation is for all the roots xn where g(xn) = 0, and g′(·) is the
derivative of the function with respect to x− (e.g. [29]).

Appendix B. Solution of the forward equation
For a general case where the system state x is forced by a m number of exponentially distributed
jump variables zi (with PDFs γi(x

−
i ) e−γi(x−

i )zi ) each with a state-dependent arrival frequency of
λi(xi) and rainfall-runoff transformation of h(z, x−) of equation (3.1) of §3, the master equation of
equation (2.21) of §2b is

∂

∂t
px(x; t) =

m∑
i=1

∂

∂xi
[f (xi)pxi (xi; t)] − ωiλi(xi; t)pxi (xi; t)

+
m∑

i=1

ωi

∫ xi

0
γi(x

−
i ) e−γi(x−

i )(xi−x−
i )λi(x

−
i ; t)pxi (x

−
i ; t) dx−

i

+ δ(1 − x)
m∑

i=1

ωi

∫ 1

0

∫∞

0
γi(x

−
i ) e−γi(x−

i )(1+hi−x−
i )λi(x

−
i ; t)pxi (x

−
i ; t) dhi dx−

i , (B 1)

where the weights ωi (for which wi ∈ (0, 1) and
∑m

i=1 ωi = 1) determine the contribution of the
random jump quantity to the overall system state, and the jump parameter γi(x

−
i ) is dependent on

the parameter γi, which is the inverse of the normalized average rainfall depth w0/αi. In the case of
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a pure threshold of §3a, γi(x
−
i ) = γi, but in the more complex case of the threshold complemented

by a progressive partitioning of §3b, γi(x
−
i ) = γi/(1 − βx−

i ).
When each jump variable zi is considered separately, we may construct a master equation for

each state variable xi, which in steady state is

∂

∂xi
[f (xi)pxi (xi)] − ωiλi(xi)pxi (xi) + ωi

∫ xi

0
γi(x

−
i ) e−γi(x−

i )(xi−x−
i )λi(x

−
i )pxi (x

−
i ) dx−

i

+ δ(1 − xi)ωi

∫ 1

0

∫∞

0
γi(x

−
i ) e−γi(x−

i )(1+hi−x−
i )λi(x

−
i )pxi (x

−
i ) dx−

i dhi = 0. (B 2)

Note that for x < 1 the atom of probability represented by the delta function disappears, i.e.

∂

∂xi
[f (xi)pxi (xi)] − ωiλi(xi)pxi (xi) + ωi

∫ xi

0
γi(x

−
i ) e−γi(x−

i )(xi−x−
i )λi(x

−
i )pxi (x

−
i ) dx−

i = 0. (B 3)

The third term represents the convolution of the infiltration PDF, i.e. pyi (yi) = γi(x
−
i ) e−γi(x−

i )yi , with
the term λi(x

−
i )pxi (x

−
i ). The dependence of pyi (yi) on x−

i through the parameter γ (x−
i ) prevents us

from finding a solution for equation (B 3). In the case of equation (3.33) of §3b where γi(x
−
i ) =

γi/(1 − βx−
i ), the fraction x− will produce a relatively small change in γi(x

−
i ). Therefore, we find an

approximate solution by assuming that γi(x
−
i ) is a constant that is independent of the convolution,

and thus now perform the convolution over the dummy variable x∗
i , i.e.

∂

∂xi
[f (xi)pxi (xi)] − ωiλi(xi)pxi (xi) + ωi

∫ xi

0
γi(x

−
i ) e−γi(x−

i )(xi−x∗
i )λi(x

∗
i )pxi (x

∗
i ) dx∗

i = 0. (B 4)

Multiplying by eγi(x−
i )xi and differentiating with respect to xi provides

d2

dx2
i

[f (xi)pxi (xi)] + γi(x
−
i )

d
dxi

[f (xi)pxi (xi)] − ωi
d

dxi
[pxi (xi)λi(xi)], (B 5)

and integrating this ordinary differential equation yields

d
dxi

[f (xi)pi(xi)] + γi(x
−
i )f (xi)pxi (xi) − wipxi (xi)λi(xi). (B 6)

For the previous expression, the general form of the solution is

pxi (xi) = C
f (xi)

exp
(

−γi(x
−
i )xi + ωi

∫
λi(xi)
f (xi)

dxi

)
, (B 7)

where C normalizes the PDF, and this solution is exact when γi(x
−
i ) equals a constant but

otherwise requires an approximation for closure such as the one of equation (3.35) of §3b. The PDF
pxi (xi) represents a system only forced by the specific exponentially distributed random variable
zi arriving at frequency λi(xi). For only a single exponentially distributed random variable with
a constant parameter γ with the weight ω1 = 1, equation (B 7) is equal to the exact solution of
equation (3.17) of §3a. The specific solution of equation (B 7) for the linear rainfall arrival process
of equation (3.18) of §3a and linear drift, i.e. f (xi) = kxi, is

pxi (xi) = Θ(xi)Θ(1 − xi)
C
k

xλoωi/k−1
i e(σωi/k−γi(x−

i ))xi . (B 8)

For only a single exponentially distributed random variable with a constant parameter γ with the
weight ω1 = 1, equation (B 8) is equal to equation (3.19) of §3a. For a system forced by multiple
exponentially distributed random variables, zi, the system solution is a summation of random
variables, i.e. x =∑m

i=1 xi, and the PDF of x is a convolution of different distributions with the
form of equation (B 8).
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For the convolution of two distributions with the respective weights ω1 and 1 − ω1, the
convolution integral is

px(x) = C
k2

∫ x

0
e−(γ1(x−)−σω1/k)x1 x−1+λoω1/k

1 e−(γ2(x−)−σ (1−ω1)/k)(x−x1)(x − x1)−1+λo(1−ω1)/k dx1. (B 9)

By a change of variables x1 = sx and rearrangement of the terms equation (B 9) may be written as

px(x) = C e−(γ2(x−)−σ (1−ω1)/k)xx−1+λo/k

k2

·
∫ x

0
e−(γ1(x−)−γ2(x−)−2σω1/k+σ/k)xss−1+λoω1/k(1 − s)−1+λo(1−ω1)/k ds. (B 10)

Rearranging the previous expression according to eqn (13.2.1) of [45] retrieves

px(x) = Θ(x)Θ(1 − x)
C e−(γ2(x−)−σ (1−ω1)/k)xx−1+λo/k

k2
Γ (λoω1/k)Γ (λo(1 − ω1)/k)

Γ (λo/k)

· 1F1,
(

λoω1

k
,
λo

k
, −
(

γ1(x−) − γ2(x−) − σ
2ω1 − 1

k

)
x
)

, (B 11)

where 1F1(·) is the confluent hypergeometric function of the first kind, and Γ (·) is the gamma
function. When equation (13.1.27) of [45] is applied, equation (B 11) is equal to equation (3.25) of
§3a where γ1(x−) = γ1 and γ2(x−) = γ2, as well as to equation (3.34) of §3b where γ1(x−) = γ1/(1 −
βx−) and γ2(x−) = γ2/(1 − βx−). In the case where γ1(x−) = γ1 and γ2(x−) = γ2, the solution is
exact; however, for all other cases, the solution requires closure through an approximation such
as the one presented by equation (3.35) of §3b.
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