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Abstract Though Ogden et al. list several shortcomings of the original SCS-CN method, fit for purpose is
a key consideration in hydrological modelling, as shown by the adoption of SCS-CN method in many design
standards. The theoretical framework of Bartlett et al. [2016a] reveals a family of semidistributed models, of
which the SCS-CN method is just one member. Other members include event-based versions of the Variable
Infiltration Capacity (VIC) model and TOPMODEL. This general model allows us to move beyond the limita-
tions of the original SCS-CN method under different rainfall-runoff mechanisms and distributions for soil
and rainfall variability. Future research should link this general model approach to different hydrogeo-
graphic settings, in line with the call for action proposed by Ogden et al.

We thank Ogden and colleagues [Ogden et al., 2017, hereinafter referred to as O&C] for their interest in our
work and for generating community discussion on the curve number (SCS-CN) method. We largely concur
with their assessment of the SCS-CN method as well as with their generic call for future research directions.
Indeed, the development of hydro-geographically appropriate dynamic models, multiscale model capabili-
ties, and improved data collection for specific research questions is what much of our own past work has
focused on [e.g., McDonnell et al., 2007; Porporato et al., 2015].

Here in response to O&C, we first address the SCS-CN method and whether or not it makes sense to con-
tinue discussions of its use and usefulness; we then reply to their specific criticism at the end of this
response. As pointed out by their comment, the empirical SCS-CN method is simple and works well for small
agricultural watersheds, but has significant shortcomings for other undisturbed watershed types, specifically
forested watersheds. Of course, the original formulation has little in the way of any process underpinning,
as they correctly note. But then, so might be said of the rational method that has been around for 100 years
longer than the curve number [Mulvaney, 1851] and we would not want to throw that away. Both are impor-
tant components of current design standards, such as TR55 [Cronshey, 1986], and other models. Again, fit
for purpose is a key factor in any hydrological modeling.

It is true that our work with the curve number was motivated by its limitations and aimed to extend its
applicability [Bartlett et al., 2016a]. But, more broadly and more importantly, our goal is to explore a theoret-
ical underpinning to this method that was perhaps hitherto unnoticed. As detailed in a subsequent paper
[Bartlett et al., 2016b], we have described a family of semidistributed models, of which the SCS-CN method
is just one. Other models described by this framework include event-based versions of the Variable Infiltra-
tion Capacity (VIC) model [Liang et al., 1994] and TOPMODEL (Topography-based hydrologic MODEL) [Beven
and Kirkby, 1979]. The resulting general model indeed allows us to go beyond the original SCS-CN method
and apply it to situations where the original method fails. That theory also paved the way for a nonstatic
application of the framework and a calculation of the antecedent moisture conditions as linked to ecohy-
drological and climate considerations [Bartlett et al., 2016c].

So, we are motivated not so much by breathing new life into the curve number, but by exploring the gener-
ality and power of treating the rainfall-runoff processes at a point as a joint distribution of runoff, rainfall,
soil moisture, and potentially other watershed variables. This runoff distribution characterizes the spatial
variability of runoff, as well as the fraction of the watershed with specific rainfall-runoff mechanisms. Based
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on this distribution, the average (unit area) runoff, the so-called “runoff curve,” follows as a function of rain-
fall and moisture status on a unit area basis.

In comparison to the original SCS-CN method, the new runoff curve provides a much improved representa-
tion of runoff in forested watershed areas [see Bartlett et al., 2016a, Figure 9 and Table 2]. This runoff curve
fixes the large error that was previously rectified by unrealistically increasing the maximum potential reten-
tion with increasing rainfall [Tedela et al., 2011]. While this new runoff curve may be considered a refine-
ment of the original SCS-CN method, the overall framework is not. The framework provides for a continuum
of models that are akin to, but yet different than the SCS-CN method. In this sense, the framework opens a
path that moves beyond the original SCS-CN method. To start, the framework provides a previously missing
characterization of runoff spatial variability (via the joint distribution of runoff with other watershed varia-
bles)—a key development that O&C call for. Furthermore, the framework shows that the same canonical
runoff curve represents both common semidistributed models and the SCS-CN method, i.e.,

Q=RF(S,R)+R(1—F:(S,R))P,. (1)

where average (unit area) runoff Q is a function of the average antecedent potential retention, S, average
rainfall R, the prethreshold runoff index P, and the fraction of area with threshold-excess runoff, F,(S,R)
[see Bartlett et al., 2016b, equation (10)]. This expression of equation (1) differs for each model expression of
F:(S,R) (e.g., VIC, TOPMODEL, etc.), which results from a unique distribution of watershed properties.

Thus, as mentioned by O&C, moving forward will require adapting models to specific problems and linking
model types to different hydrogeographic settings, all of which will require extensive data acquisition. How-
ever, O&C do not recognize the compatibility of their call with our framework, which accommodates differ-
ent runoff mechanisms (including threshold-type runoff resulting from different hydrologic connections to
the stream [e.g., Hewlett and Hibbert, 1967; Tromp-van Meerveld and McDonnell, 2006a, 2006b; McGuire and
McDonnell, 2010]) as well as different data-derived distributions for describing soil and rainfall variability.
Indeed, we are intrigued by the fact that previous process-based rainfall-runoff research may be converging
on the idea that all runoff processes are “the same,” i.e., all threshold like via filling, spilling, loss along the
flow path and ultimately connectivity of saturated areas [McDonnell, 2013; Ameli et al., 2015; Bartlett et al.,
2016b]. If true, this could lead to interesting developments for dynamic and multiscale models and new
guidance for what data to collect in the field.

Regarding the specific criticism of O&C,
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Figure 1. Comparison of rank-order data to the SCS-CNx method for the
complacent response of (a) the Panola Mountain Watershed (gray dots, data
from the U.S. Geological Survey) and (b) the violent response of the Berea 6
watershed (crosses) [Hawkins, 1993]. Model fit minimizes the root-mean-
square error (RMSE). For the Panola watershed, RMSE = 0.0074 for

S$=1931 mm, P,=0.21, and x = 0; and for the Berea 6 watershed,

RMSE = 0.076 for S= 20 mm, P,=0.04, and u=0.07. Note that the SCS-CN ini-

tial abstraction—a fraction u of S—abstracts rainfall before an effective value,

ie,R:=R— 1%5;,/, produces a threshold-excess response at any watershed
point.

et al,, 1998] in this framework, (iii) capturing
discontinuity of the rainfall field and sys-
tematic spatial nonuniformities is possible
through mixed distributions [e.g., Sivapalan
et al, 1997], and (iv) accommodating (non-
random) heterogeneity is feasible as dem-
onstrated by the framework adaptation to
TOPMODEL [Bartlett et al., 2016b].
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C6: O&C incorrectly state that our approach relies on an assumption of stationarity, which is never mentioned
in our work. In fact, subsequent work [Bartlett et al., 2016¢] has successfully applied the model to seasonal and
time-varying conditions. Regarding equations (14) and (15) of Bartlett et al. [2016a], they provide a threshold
description of runoff supported by detailed process work from the field [e.g., Hewlett and Hibbert, 1967; Tromp-
van Meerveld and McDonnell, 2006a,b; McGuire and McDonnell, 2010]. In lieu of equations (14) and (15), the the-
oretical framework allows for approximations to Richards equation solutions (e.g., time compression approxi-
mation) or other approaches that include the rainfall rate, as already mentioned.

C8: O&C provide the unsubstantiated claim that the SCS-CNx method does not capture nonstandard (vio-
lent and complacent) rainfall-runoff behaviors found in rank order-data [e.g., Hawkins, 1993]. Indeed, as
shown in Figure 1, our extended model well captures these behaviors, without additional empirical equa-
tions adjusting the CN parameter to the rainfall amount [e.g., Hawkins, 1993]. In this comparison, we con-
sider the SCS-CNx method with the SCS-CN concept of an initial abstraction threshold—a fraction u of S
that abstracts rainfall prior to any threshold-excess response at a point.

C9: This comment is especially surprising since O&C themselves invoke Hawkins [1993] who used rank-order
data in support of their earlier arguments (see C1 and C8). To be absolutely clear, the model by Bartlett et al.
[2016a] respects causality. As in Hawkins [1993], we use the rank-order data to extract an expected
rainfall-runoff response [see Bartlett et al., 2016a, Appendix D]. The rank-order data are just one route for
data comparison. We also may compare event-based models like the SCS-CN method to the joint distribu-
tion of average rainfall and runoff for many events, as was demonstrated by Bartlett et al. [2015].

To conclude, the scientific process is an ongoing one of finding and sharing evidence to support, disprove, or
revise hypotheses, theories, and models. Under this light, it is certainly useful for O&C to acknowledge how
the SCS-CN model originated, but it is also scientifically relevant for us to provide new physical justification
and/or qualification to that model, so that our understanding and predictive capabilities are extended.
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