
1. Introduction
The famous French mathematician Henri Poincaré said that “Science is built up of facts, as a house is with 
stones. But a collection of facts is no more a science than a heap of stones is a house” (Poincaré, 1902). Our 
perceptual understanding of runoff processes sometimes appears as a heap of facts (or observations), with 
many of them dating back to the First International Hydrological Decade and the following years, when 
key observations were made regarding translatory flow (Hewlett & Hibbert, 1967), saturation excess over-
land flow (Dunne & Black, 1970), saturated wedges (Weyman, 1973), old water effusion (Martinec, 1975), 
the importance of topographic convergence (Anderson & Burt, 1978) and preferential flow (Mosley, 1979). 
Since then, field hydrologists have continued to document more and more runoff responses in more and 
more areas.

What we have learned from these myriad studies is that (i) runoff processes are scale dependent, making 
the “up-scaling” of field-based process observations very difficult to nearly impossible, (ii) runoff concepts 
developed for humid areas (e.g., the variable source area concept) often do not apply in semi-arid and arid 
areas, and (iii) runoff responses are non-linear (thresholds, hysteresis, etc.) because regardless of whether 
the dominant flowpaths occur at the surface as overland flow or as subsurface stormflow within the soil or 
subsoil or saprolite or bedrock, some storage needs to be filled before runoff occurs.

Our heap of facts about runoff generation obtained by process observations have continued to grow, but 
there has been little construction of these facts into a body of knowledge. This seems to be a crucial next step 
in catchment hydrology, as it has been in other areas of science where observations gain significance when 
one uses reason to group them in meaningful ways (Beveridge, 1950). Indeed, “grouping” is a theme in the 
development of many fields; notably Darwin's (1859) observation that “science consists of grouping facts so 
that general laws or conclusions may be drawn from them” and Hughlings-Jackson's (1882) advice that we 
have multitudes of facts but “we require, as they accumulate, organizations of them into higher knowledge; 
we require generalizations and working hypotheses.”
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The importance and need for such grouping has been made previously. Dooge (1986) pushed us to do this in 
his “searching for hydrologic laws,” the epic paper aimed at “searching for regularities” in runoff hydrology. 
Others have commented on the need for catchment comparisons (Barthold & Woods, 2015; Buttle, 2006; 
Falkenmark & Chapman, 1989; McDonnell & Woods, 2004; Wagener et al., 2007) or the development of 
similarity measures (e.g., Knoben et al., 2018) and the need for more general frameworks for hydrologic 
processes (Clark et al., 2017). Dooge (1986) noted the importance of searching for analogies as a fruitful way 
to get to the construction of models and new theories. He noted the problem of parameterizing the effects 
of microscale processes at the macroscale.

We know that catchments are not simply a linear superposition of soil core scale processes (McDon-
nell,  2003), thus making the use of simple additive perceptual models of runoff generation often futile 
(Beven, 2002) and scaling difficult (Blöschl & Sivapalan, 1995). The recognition that runoff generation is 
extremely scale dependent has created an impasse for the incorporation of rudimentary runoff generation 
concepts into land surface models (Fan et al., 2019).

Here, we assert that event-based “fill-and-spill” appears to group together runoff generation process behav-
ior across all scales. Meaning, that all runoff processes have in common that vertical and lateral additions of 
water to a landscape unit of interest are first placed into storage and only when this storage reaches a critical 
level (the fill), is a previously infeasible (but subsequently important) outflow pathway activated (the spill).

In the broadest hydrologic sense, fill-and-spill is simple vernacular for “storage excess.” Independent of 
scale, there are always a series of stores within soil columns, hillslopes, and catchments that require filling 
before water can flow to down-gradient areas. Heterogeneity in the storage capacity within each scale re-
sults in a spatially and temporally diverse number of stores. The macroscale response that is observed at any 
moment in time depends on how well connected these diverse stores are to an observed outlet. Fill-and-spill 
describes the process of these various (local) storage areas becoming progressively filled and connected as a 
prerequisite to producing a (macroscale) runoff response.

Fill-and-spill has been evoked to explain hydrological connectivity and runoff generation in many environ-
ments, ranging from hillslopes in temperate climates (Du et al., 2016; Tromp-van Meerveld et al., 2006), 
alpine areas (Muir et al., 2011), the high arctic tundra (Helbig et al., 2013; Rushlow & Godsey, 2017; Young 
et al., 2010) to tropical savannah (Farrick & Branfireun, 2014) and rainforests (Howard et al., 2010; Zim-
mermann et al., 2014). It has been used to explain runoff generation on frozen ground (Coles & McDon-
nell, 2018), surface water dynamics in the prairie pothole region (Leibowitz et al., 2016) and between small 
lakes (Mielko & Woo, 2006). It has been applied to urban infrastructure (Orlowski et al., 2014), perched 
groundwater tables (Ali et al., 2011), forested swamps (Martin, 2011), and interconnected bogs (Connon 
et al., 2015). Meltwater between lakes on the Greenland ice sheet have shown fill-and-spill behavior (Arnold 
et al., 2014) along with giant lakes on Mars (Balme et al., 2011; Ghatan et al., 2005; Warner et al., 2013).

Here we argue that if beauty is in the eye of the beholder, then fill-and-spill is at the scale of the beholder. 
In other words, we think that to search for scale invariant processes is futile; rather it is more useful to 
first define our scale of interest and to then evaluate how and what is filling and spilling at that scale. This 
commentary is for field hydrologists and those instrumenting and interrogating hillslopes and catchments 
because we think that fill-and-spill could be a way to group what we measure at current and future field 
sites. We build on recent work that has pointed at aspects of fill-and-spill as a way forward (Ali et al., 2013; 
McDonnell, 2013; Spence, 2010) and define fill-and-spill, and its manifestations at the plot, hillslope and 
catchment scales. We end the commentary with a vision for how the use of the fill-and-spill concept might 
help guide the development of perceptual models for runoff generation at different scales and propose some 
specific tests that could be helpful to move these ideas forward.

2. Fill-and-Spill Description
Hints of event-based fill-and-spill processes date back to the late 1960s and early 1970s with the early model 
formulations of overland flow and subsurface stormflow (see Figure 1 in DeBoer & Johnson, 1971; the PhD 
thesis work by Haan, 1967; and Figure 10 in Hewlett & Nutter, 1970). The probability-distribution principle 
for runoff production at plot- and basin scales of Moore (1985) also points in this direction where he noted 
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that “the volume of direct runoff” is “a result of storage capacities of increasing depth being progressively 
replenished and starting to spill.”

The term “fill-and-spill” as a rainfall-runoff process was first introduced by Spence and Woo (2003) who 
used it to explain runoff generation on the Canadian Shield. They showed that instead of runoff being gen-
erated from a rising water table in the bottom of the valley, runoff was generated first at upslope locations 
with smaller storage capacities, which subsequently spilled downslope to fill storage in lower locations. The 
filling of these heterogeneous storage areas was in large contrast to the concepts of saturation overland flow 
and variable source area hydrology for humid catchments. While not called fill-and-spill per se, Leibowitz 
and Vining (2003) proposed essentially the same mechanism for temporal connectivity of a prairie pothole 
complexes. Tromp-van Meerveld and McDonnell (2006a, 2006b) found that such a concept could explain 
the threshold nature of subsurface stormflow; runoff generation at the hillslope scale required connectivity 
of “saturated subsurface patches” that formed at the soil-bedrock interface. Since then, the term “fill-and-
spill” has been used in a 100+ papers in the hydrology literature to describe processes across scales from the 
plot, to hillslope, catchment and beyond.

As noted already, fill-and-spill, in the broadest hydrologic sense, is “storage excess.” It is the notion that all 
vertical and lateral additions of water to a landscape unit are first placed into storage, and outflow occurs 
only when this storage is filled. This can be represented mathematically by:
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where  i xq  is the outflow via the activated pathway from landscape unit i at scale x over a period T, S is the 

storage held within that landscape unit, S  is the critical threshold storage, and  i xf  is some (possibly hyster-

etic) function that describes the rate of release via this activated pathway (Figure 1).

The storage itself varies in time:
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where I, includes all vertical and lateral inputs into landscape unit i, and L includes all vertical and lateral 
outputs (or losses) from i other than q.

Taken more broadly, fill-and-spill can be understood as a hydrologic example of an activation barrier or 
potential barrier, which is a widely used concept in physics (Dyre, 1988; Menzinger & Wolfgang, 1969; Raza-
vy, 2003). This can be more than analogy if the potential energy of the system rises as the storage fills. The 
storage threshold can then be seen as the potential energy threshold at which the new pathway is activated. 

MCDONNELL ET AL.

10.1029/2020WR027514

3 of 13

Figure 1. Our simple perceptual model of storage excess at a single scale.
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This is familiar territory in hydrology, as potential energy in hydrologic landscape units is commonly linked 
to storage (e.g., moisture content vs. soil water potential; or water surface elevations vs. hydraulic head 
under hydrostatic conditions).

Thus if we denote H the energy at a given storage, the expression above can be represented by:
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Fill-and-spill applies where a threshold activation dominates the runoff generation dynamics. This is not 
to say that it precludes other streamflow generation mechanisms. Indeed, there must be other pathways for 
the water (and potential energy) to leave the system (represented above by the losses L) so that the storage 
can be less than the threshold prior to the next event. This threshold-like fill-and-spill behavior can occur in 
different places (i.e., at the surface, near the surface or at great depths in the soil or saprolite) and at different 
landscape units or scales.

The rapid, non-linear change in behavior resulting from event-driven fill-and-spill activation is—as we will 
show in the next section—commonly the “biggest game in town,” that is, the magnitude and direction of 
the flux that occurs above the threshold is substantially different from the fluxes that occur below it. Even 
where the threshold is somewhat “fuzzy,” when looked at closely, the excursions above and below it are 
the emergent behavior. Thus the main message here is that runoff at any scale is best considered as a cata-
strophic failure of storage (Ward et al., 2018). As we will discuss in the next section, activation thresholds 
can dominate the movement of water at scales ranging from pores to headwaters and beyond. We argue that 
where it does occur, understanding this threshold is the key to understanding system behavior.

The main difference between fill-and-spill and “simple” storage excess (as described in Equations  1–3 
above) is that there isn't a single (average) storage capacity S  that needs to be filled. Rather, multiple storag-
es are filled and flow from one storage area is used to fill the storage in the receiving area, often resulting in a 
cascading type of flow path. In other words, the larger scale storage threshold is the emergent behavior that 
results from multiple smaller storage areas filling and spilling and becoming connected. This combination 
of storages that need to be filled and the connectivity of these storages may cause a sharper runoff threshold 
and a larger total storage capacity S  than would perhaps otherwise be expected. It also leads to spatially 
variable storage, water potentials and losses—which affect the interpretation of point scale observations 
and may have important implications for ecological processes, weathering, solute transport, etc.

The function  i xf  that describes the rate of release once the threshold is reached, is often approximated 

by a power-law permeability-saturation relationship (e.g., Mualem, 1976) for soils, and storage-discharge 
relations at the catchment scale (e.g., Gray, 1961; Wittenberg, 1999). But this may be more accurately rep-
resented by a relationship that is hysteretic, that is, one that depends on additional time-varying factors (cf. 
Beven, 2006). If only the total quantity of water released q is of interest, then the details of  i xf  may not 

matter, and it may be sufficient to view the system through the lens of runoff events (what the probability 
theory literature calls a point process). This is most appropriate for the Goldilocks conditions when the 
inputs are intermittent (i.e., precipitation events), the time taken to return to the threshold condition (T in 
the equation above) is not too large, and the other losses L during that time period are not too big. Through 
this lens, the losses L might vary gradually in time, but the inputs I and “spill” q might be treated as brief 
pulses (or even effectively instantaneous). This framework has been explored extensively in ecohydrology 
to represent soil moisture dynamics (Botter et al., 2007; McGrath et al., 2007; Rodriguez-Iturbe & Porpora-
to, 2005), where the threshold represents a field capacity integrated over the root zone depth. This work has 
highlighted how the probability distribution describing q is determined by the magnitude and frequency of 
input events I and the antecedent moisture conditions, which are controlled by L.
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3. Fill-and-Spill Manifestations From Micro to Macro Scales
3.1. Pore Scale

Analogies to fill-and-spill at the pore-scale can be found in the abrupt, threshold-based displacement of 
water and air during infiltration and drainage. This involves the filling of one fluid phase and the spilling of 
the other once a potential threshold is exceeded (DiCarlo, 2013). A “hold-back pile-up” conceptual model 
(Eliassi & Glass, 2001, 2003) has been used to represent the temporary “hold-back” of the initial wetting 
front during infiltration. Once the accumulated water potential exceeds the pore entry pressure threshold, 
the water fills the pores and advances downwards. The conceptual model for drainage is largely based on an 
“invasion percolation process” (Blunt & Scher, 1995), where atmospheric air and air trapped in ganglia pro-
gressively invade smaller and smaller pore openings via a displacement process called the “Haines jump” 
(Haines, 1930). Haines jumps occur when the capillary pressure across the fluid interface exceeds the pres-
sure threshold required to invade an opening (Herring et al., 2018). Within milliseconds, air rushes in and 
displaces water in the invaded pores, often simultaneously in avalanche-like cascades (Moebius & Or, 2012). 
These instabilities observed during two-phase immiscible fluid displacement are strikingly similar to lateral 
flow at the larger plot-and hillslope scales described below.

3.2. Plot and Hillslope Scale

3.2.1. Surface Runoff

Surface micro-topography has a major effect on surface storage, connectivity and the initiation of overland 
flow (Darboux et al., 2001; Frei et al., 2010, 2012). The effect of the filling and connection of surface depres-
sions on overland flow generation has largely been studied in agricultural fields (e.g., Peñuela et al., 2016) 
and more recently also on frozen agricultural hillslopes (Coles & McDonnell, 2018). The “puddle to puddle 
model” of fill-and-spill by Chu et al. (2015) is a classic example. Others, such as Appels et al. (2011) and 
Peñuela et al. (2016) have used a similar approach. Plot scale fill-and-spill behavior has also been shown to 
create hot spots for biogeochemical activity (Frei et al., 2012) and surface-subsurface water exchange in the 
riparian zone (Frei et al., 2010).

3.2.2. Subsurface Flow

Fill-and-spill was introduced as a subsurface hillslope-scale runoff generation process by Tromp van 
Meerveld and McDonnell (2006b). They showed that rainfall fills up depressions in the bedrock and that 
once the storage capacity of these depressions was filled, the water spilled over microtopographic relief, 
connecting subsurface saturated areas to lower slope sections in a cascading way. When connectivity was 
achieved, the instantaneous subsurface stormflow rate increased more than fivefold and total subsurface 
stormflow was more than 75 times larger. This fill-and-spill behavior observed at the Panola research slope, 
a forested, humid, continental, subtropical watershed, was also later observed at Maimai, a steep, wet, 
headwater catchment, (Graham et al., 2010) and at the H. J. Andrews catchment (old-growth mountain-
ous region in the Pacific Northwest) (McGuire & McDonnell, 2010), as well as the low angle coastal plain 
hillslopes at the Savannah River Site (Du et al., 2016; Jackson et al., 2016).

3.3. Catchment Scale

Spence and Woo (2006) conceptualized the importance of filling a series of heterogeneous stores in a catch-
ment before significant flow could occur at the outlet. The size, location and connectivity of the storage 
areas on the landscape dictated the volume of water that was directed to downslope or downstream loca-
tions in the catchment; and controlled the overall storage state that determined flow at the outlet (Spence & 
Woo, 2006). Filling of storage areas across a catchment does not occur as a continuum, but follows a series of 
discontinuous thresholds from smaller to larger landscape units. Others have shown for the ∼100 km2 wa-
tershed scale how the smaller (1–5 km2) catchments that comprise the larger watershed fill-and-spill along 
abrupt non-linear transitions controlled by sub-basin slope gradient and geomorphic characteristics—and 
these processes ultimately drive the activation of the larger watershed response (Sayama et al., 2011). Often, 
upscaling these thresholds to the catchment scale and superimposing the different efficiencies with which 
runoff is transmitted for the different areas produces a very non-linear relationship between inputs and 
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runoff (Ali et al., 2015). Field studies have demonstrated that the nature of this non-linearity is related to 
the geometric and topological structure of the catchment that determines which areas fill, coalesce and 
connect (spill) along pathways to the catchment outlet (Devito et al., 2005; Jencso & McGlynn, 2011; Oswald 
et al., 2011; Quinton et al., 2003; Rains, 2011; Spence, 2007).

The Prairie pothole landscape, in the northern Great Plains of North America, provides a classic example 
of fill-and-spill at the catchment scale. The numerous surface depressions (i.e., the potholes) dominate 
the poorly integrated drainage network. They receive snowmelt and rainfall until they fill and permit pe-
riodic surface hydrological connections to other depressions and eventually to higher order streams. The 
resulting dynamic hydrological connectivity and streamflow response is highly threshold mediated (e.g., 
Brooks et al., 2018; Haque et al., 2018; Shaw et al., 2012). Understanding the influence of fill-and-spill on 
the periodicity of hydrological isolation and connection is crucial to explain how these depressions control 
floods, buffer nutrient transport and enhance biodiversity (Golden et al., 2016; Leibowitz et al., 2018; Rains 
et al., 2016).

One of the first reports of fill-and-spill in a large catchment comes from stochastic flood frequency models 
for the Lake Warden catchment in Australia. There, runoff generation thresholds resulted in a break in the 
slope of the flood frequency curves (Kusumastuti et al., 2007) because antecedent storage was a dominant 
control on lake-overflow events (Kusumastuti et al., 2008). Bowling and Lettenmaier (2010) used a macros-
cale hydrological model to assess the effects of lakes and wetlands in two large arctic river basins and found 
that the system was consistent with the element threshold concept of Spence and Woo (2006), particularly 
for runoff generation in summer. A similar result was found by Gibson et al. (2016), who used stable iso-
tope-based partitioning, in the Athabasca River Basin of Canada, to show that most rain and snowmelt 
events resulted in the indirect displacement of pre-event water by fill-and-spill mechanisms. Incorporating 
fill-and-spill behavior into catchment scale models has also proven beneficial, as demonstrated by Mekon-
nen et al. (2014) who showed that their fill-and-spill algorithm greatly enhanced the performance of exist-
ing hydrological models for the Assiniboine River Basin in Canada.

4. Heterogeneity as the Key to Process Understanding
Spatial heterogeneity in the landscape has been a source of frustration for hydrologic science (McDonnell 
et al., 2007). It is particularly frustrating if we want to use models based on the Darcy Law and the Richards 
equation to understand and predict hydrologic dynamics. It seems like we need to make measurements 
everywhere at fine enough spatial scale to capture the heterogeneity—a practical impossibility. Given that 
impossibility, what should we do instead? Often the heterogeneity is averaged-over in some sense, and 
replaced with spatially uniform parameters. But critically, neglecting the heterogeneity while retaining the 
governing equations means that the threshold-like shifts in flow magnitude and direction are missed. And 
these are often the most important control on the hydrologic response; and cannot be replicated by the same 
governing equation with “effective” (averaged) parameters.

The power of heterogeneity can be seen in an example at the hillslope scale and the use of Darcy-Richards 
models at the Panola experimental hillslope (see work by Camporese et  al.,  2019 using CATHY; Ameli 
et  al.,  2015 using Hydrogeopshere; James et  al.,  2010 using TOUGH2; Hopp & McDonnell,  2009 using 
HYDRUS 3D). In each of these modeling applications, these sophisticated models did not capture the fill-
and-spill runoff dynamics observed when the soil/regolith boundary was represented as a smooth surface, 
even when the measured average soil depth was used, or if the bedrock was considered to be impermeable 
(L = 0). When the observed irregularity of that boundary (i.e., the storage distribution) was incorporated 
into the model, then each of these models was able to represent the magnitude and timing of the hillslope 
hydrograph. Most interesting from this example is that when a stochastic representation of the spatial var-
iation in hillslope storage depths was attempted, even a simple conceptual model was able to accurately 
represent slope-scale fill-and-spill (Tromp van Meerveld & Weiler, 2008 using Hill-Vi).

It is important to note here that we do not view the Panola research site as representative of all hillslopes 
(or even all hillslopes within the Panola catchment). Rather it has been extremely useful as a testbed for un-
derstanding runoff generation process, because the boundary conditions have been well mapped and these 
boundary conditions appear to control the hillslope response. At very different trenched and instrumented 
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experimental field slopes in South Carolina (Jackson et al., 2016), New Zealand (Graham et al., 2010), Ore-
gon (McGuire & McDonnell, 2010) and Saskatchewan (Coles & McDonnell, 2018) we have seen very similar 
hold-back behavior linked to fill-and-spill and whole slope connectivity. The message across these very 
different systems has been the same: when the key heterogeneity of the system—at the scale of interest—is 
known, then a Darcy-Richards model can provide a physically reasonable and useful representation of 
fill-and-spill behavior. But when that heterogeneity is not described, such a model fails to reproduce the 
observed flow dynamics.

It can be difficult to obtain data at the desired resolution to adequately represent this heterogeneity in an 
explicit manner. However, what is important is that the heterogeneity be represented well enough that its 
control on runoff response and behavior can be captured. We do not need to know the exact configuration 
of the storage areas in order to be able to simulate their filling and spilling. There is evidence that there may 
be ways to represent heterogeneity implicitly and capture functional hydrological connectivity dynamics 
and runoff behavior at the scale of the beholder. And the example given earlier that a geospatial representa-
tion of the bedrock topography can be sufficient to correctly simulate the observed thresholds, as well as 
the observed spatial variability in the thickness of the transient saturated layer is encouraging (Tromp van 
Meerveld & Weiler, 2008).

Recognizing the role of surface storage filling and connectivity on the triggering of plot-scale surface runoff, 
Antoine et al. (2009) proposed a “relative surface connectivity function.” This function provides a quanti-
tative link between surface roughness and overland flow (Peñuela et al., 2016) and can be extrapolated to 
other scales (Peñuela et al., 2013). There is a large body of literature that has been built on the use of proba-
bility distributions of hydraulic conductivity, rainfall intensity, and infiltration capacity (Dunne et al., 1991; 
Smith & Freeze, 1979; Smith & Hebbert, 1979) to represent how sub-scale conditions influence the field 
or catchment scale runoff response. Similar attempts have been made with storage capacity (Mekonnen 
et al., 2014; Moore, 1985), but because of the potential for parallel, series, and nested relationships between 
storage areas, it is perhaps more difficult for such approaches to succeed since the topological relationships 
need to be accounted for as well (Buttle, 2006). Furthermore, relationships between storage and runoff can 
be highly non-linear and hysteretic (O'Kane & Flynn, 2007), which can make it difficult to develop parsimo-
nious means of identifying effective threshold parameters.

A (renewed) focus on fill-and-spill process description posits that heterogeneity is the key to understanding 
and simulating outflow dynamics. But not all heterogeneity is of equal importance. Only the spatial struc-
tures that determine the threshold are of first-order importance for characterizing controls on runoff gener-
ation. Looked at this way, fill-and-spill offers us some hope for dealing with the challenge of heterogeneity; 
we don't need to measure everything everywhere. We can instead focus on measuring or finding ways to 
estimate the key thresholds at the scale of the problem we are interested in. For the person heading into the 
field and wondering what to measure, it is the knowledge that the larger-scale behavior is not controlled 
by the mean field, but by critical “choke points” or “energy barriers” that must be exceeded. These choke 
points are the critical features to be found and identified.

5. Uniqueness of Scale
So which threshold matters for runoff generation? The answer to this question depends inherently on the 
scale of interest; again our mantra: Fill-and-spill is at the scale of the beholder. Figure 2 illustrates how the 
thresholds that matter at a given scale may not be meaningful at smaller scales, and may be obscured by oth-
er thresholds at larger scales. This is aligned with the view that these thresholds are often expressions of the 
heterogeneity of the landscape, and that this heterogeneity exists at all scales. Furthermore, we should not 
expect there to be simple relationships between the critical storage thresholds at smaller and larger scales.

We argue that upscaling process laws by averaging small-scale physical laws will not be adequate where a 
fill-and-spill type mechanism dominates. This will be true even where the upscaling incorporates higher-or-
der corrections to account for heterogeneity. The reason for this, we suggest, is that the larger-scale behavior 
is not controlled by the mean field, but by the aforementioned critical “choke points,” “energy barriers” or 
“gate keepers” (Phillips et al., 2011) that must be exceeded. So we are not presenting a formal mathematical 
framework that is substantially distinct from bucket-type models. However, the perceptual framework (the 
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physical reality that the mathematics approximates in some sense) motivates an approach in the future that 
looks for the relevant choke points or storage areas.

Figure 2 shows conceptually how, if one is observing flow generated by a collection of landscape units i at 
scale x (e.g., fields) the thresholds  


i xS determine the response. The thresholds  


1j xS  of units j at a smaller 

nested scale x−1 that make up the x-scale units (e.g., soil pedons within each field) can arise from quite dis-
tinct mechanisms. Consequently, the storage threshold at the larger scale unit may be larger than the sum 
of the storage thresholds of its parts.

Consider an agricultural field where soil has become saturated down to a plow-pan, and ponding has begun. 
If the ponded water flows toward a topographic depression within the field, runoff from the field as a whole 
may not be appreciable until that larger depression has filled to some threshold level. Even though the 
thresholds have been exceeded for all the landscape units within the area, the runoff that is produced fills 
an additional storage that prevents flow from leaving the area (even if it doesn't prevent water from being re-
distributed internally). See an example of this for a frozen agricultural field in Coles and McDonnell (2018).

6. How Might Fill-and-Spill get us Closer to Grouping Runoff Processes?
Ecologists realized early on that in open environmental systems—such as plots, hillslopes, catchments 
and large watersheds—all we can do is to search for patterns and model parameters (Eberhardt & Thom-
as, 1991). The fill-and-spill “pattern” links the threshold for runoff generation to the filling of storage, and 
acknowledges the heterogeneity in storage.
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Figure 2. Fill and spill across scales. The thresholds that matter at scale x = 1 do not aggregate in simple ways to the thresholds that matter at scale x = 2, 
and similarly at scale x = 3. At larger scales, structures and processes can be important that did not matter at smaller scales. Note that at any given scale, the 
threshold-like activation may also be obscured in observations of aggregate runoff from several landscape units, each with a slightly different threshold, or 
where the threshold changes in time (Figure 2).
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Going into a research catchment with the fill-and-spill mechanism as a guide can help change the goal 
from an amorphous “characterization” to “measurements against a framework” with questions like: How 
does the system fill? What is the threshold for spill? How much loss occurs along the connected flowpath? 
What physiographic and climatic controls dictate how the fill-and-spill processes at one scale influence the 
redistribution of water that is important for the threshold response at larger scales? How does vegetation's 
removal of water enhance or diminish fill-and-spill in different vegetation-climate-soil settings? The an-
swers to these questions can also help to group catchments or runoff processes.

We acknowledge that there are still instances where other threshold processes are conflated with fill-and-
spill. Question going forward include: How can we develop a sharper definition of fill-and-spill? We know 
that spatial heterogeneity occurs everywhere and at all scales and that there are a number of threshold-like 
processes in hydrology; how can theory be guided by this? Should such discussions be driven by inductive 
inference (as done in this commentary) and how can a deductive approach help? Should discussion of fill-
and-spill be a discussion of fill-store-spill as outlined by Bogaard and Greco (2016) as linked to their focus on 
landslide initiation? Important new work has begun to critically examine fill-and-spill at the hillslope scale 
in light of preferential flow at the plot scale (Nyquist et al., 2018), critically assessing the relative amounts of 
fill versus spill at the hillslope scale in low angled terrain where this ratio is different than for upland sites 
(Du et al., 2016), or describing fill-and-spill linked to shrink swell clays (Stewart et al., 2015).

One specific test that we think could be useful to include, is to explore how threshold activation “scales.” 
Cammeraat  (2004) has an excellent example of this for a semi-arid system where the threshold rainfall 
necessary to induce flow was inversely related to the area (from plot to hillslope to headwater catchment 
and larger watersheds). He also found that the variance of this threshold collapsed with scale. Humid and 
arid systems might have different scaling behavior at the headwater catchment scale, as the water table 
and riparian zone are always in contact with the stream in humid systems, but perhaps not in arid systems. 
The threshold rainfall to activate a response at the headwater scale may be smaller in humid systems, and 
reached more quickly at plot-, hillslope- and larger watershed scales. Such threshold scaling intercompari-
sons across hydroclimate and hydrogeological environments could be highly revealing.

Lastly, we know that catchments store and release water. The simple equations presented herein are not 
new—in many ways, they are the essence of the early Stanford Watershed Model (Crawford & Burges, 2004) 
and the PDM model of Moore (1985) that underlies virtually all of the most widely used catchment scale 
conceptual models. However, what we have tried to show with the examples provided above is the com-
monality of fill-and-spill behavior across a wide range of scales; and that the process of event-based filling, 
sub-grid spilling, connectivity and loss along the flowpath (at the plot, hillslope or catchment scale) leads to 
a threshold response in systems at all scales.

This commentary is a call for recognizing the many manifestations of fill-and-spill reported in the literature 
in the past 15 years. What we distill from this is that fill-and-spill occurs at the scale of the beholder. It is 
emergent behavior at the scale of interest. It is our pathway to the grouping of facts, so that, as noted at the 
outset “general laws or conclusions may be drawn from them.” Our message here is thus a pragmatic one: 
do not strive for a new theory that is an assembly of a sequence of scale, but rather something analogous to 
a “leap of scales” (Beven, 1983)—or what Klemeš (1983) called “the levels of scale at which a meaningful 
conceptualization of physical processes is possible.” In other words, we argue that it is important to focus 
on learning (1) where the dominant storage areas are that connect and disconnect, (2) the types of losses 
along the flowpath (as described by Jackson et al., 2014 and Klaus & Jackson, 2018) and, (3) how this leads 
to a non-linear runoff response.

7. Summary and Outlook
This is a WRR AGU-100 Centennial Commentary and as such, we write in a provocative style to spark 
debate. There have been many excellent research—and synthesis papers published on hydrological scaling 
in the past decade that offer better (theoretical) insights. We do not claim to compete with them. Similarly, 
others have written reviews and comments on connectivity (Rinderer et al., 2018) and threshold behaviors 
(Ali et  al.,  2013). We note that the description of runoff processes continues to become more complex. 
What we offer here is the very simple idea that runoff is at the scale of the beholder and that recognition of 
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fill-and-spill, together with its components of connectivity, thresholds and losses along the flowpath, is a 
thing for field hydrologists to look for in their quest to understand how their systems work during events. 
And perhaps guide analysis of how different systems (either at different locations or different scales) group 
and compare.

We are motivated by the desire to group and arrange behavior in such a way that perhaps others will see 
connections and help build higher knowledge. This may help slice the Gordian Knot of scale dependence 
(and often, event-size and intensity dependence) of runoff generation and free ourselves to recognize that 
runoff is not additive. We argue that “fill-and-spill” manifests at all scales and places and that there is in-
deed commonality across different systems and scales (cf. McDonnell, 2013). That all watersheds are not 
unique—but rather fill-and-spill in some way—where the relative dominance of individual fluxes dictates 
whether it is most of the time filling or spilling—and that searching for these tipping points can be fruitful 
in perceptual model development. It perhaps provides a guide for field hydrologists on what to measure, in 
what order and why; with an explicit eye to defining a priori the scale of interest and then working to define 
that scale's key fill-and-spill behavior and controls. Lastly, while Poincaré said that “Les faits ne parlent pas” 
(Facts do not speak), we think that the grouping of fill-and-spill facts speaks volumes.

Data Availability Statement
No new data are presented in this commentary therefore there are no data to include in a repository.
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