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A B S T R A C T   

Perceptual catchment models are a key first step towards hydrologic synthesis and provide the process foun
dation of predictive models. However, their development is usually limited to the headwater catchment scale 
where field work can be done. Here we develop a perceptual model approach for a regional scale catchment. We 
use a systematic “top-down” approach based on an expert-driven interpretation of the streamflow responses of 
nested subcatchments. This approach complements the traditional “bottom-up” perceptual model development 
based on fieldwork observations, which is impractical at the regional scale due to measurement limitations. As an 
example to illustrate our approach and demonstrate its feasibility, we use the 27,100 km2 Moselle catchment, 
with 26 gauged subcatchments. Our perceptual model of the Moselle catchment presents a description of 
dominant processes that we consider a-posteriori reasonable, but not a-priori obvious: where precipitation, much 
more than evaporation or groundwater exchange controls the spatial variability of average streamflow, lithology 
influences the partitioning between baseflow and quickflow, and topography and land use control hydrograph 
lag times. A striking feature of our analysis is the rather minor role that vegetation and soil appear to play in 
streamflow spatial variability at the scale of our inquiry. We use our perceptual model to build a distributed yet 
parsimonious hydrological model in Part 2 of this paper series. Although the perceptual model is specific for the 
Moselle, we hope that the perceptual model approach used here can be helpful to others working in large 
catchments in different hydroclimates, where other factors will dominate.   

1. Introduction 

Perceptual models in catchment hydrology are qualitative repre
sentations of hydrological systems intended to illustrate their main 
components, behavior and interaction (e.g. Beven, 2012; Gupta et al., 
2012). Critically, perceptual models are a key first step towards hy
drologic synthesis and provide the process foundation of predictive 
models (Beven, 2012). While perceptual model development is recog
nized increasingly for its central importance (e.g. Wagener et al., 2020) 
and several illustrations of perceptual models have been made based on 
expert knowledge (e.g. Beven and Chappell, 2021), few methods have 
been discussed to bring data to the perceptual model development ex
ercise for large watersheds. Perceptual models have been constructed 
mainly at the hillslope- or headwater catchment scale (<10 km2) (e.g. 
McGlynn et al., 2002; Wrede et al., 2015), where field measurements can 
inform process perception and form the basis for the “dialog between 

experimentalist and modeler” (Seibert and McDonnell, 2002). But how 
to develop perceptual models beyond the headwater catchment scale, 
where field-based sampling and measurement are impractical? 

The extreme scale dependency of runoff processes means that 
perceptual models developed at the field scale on hillslopes and head
water catchments are generally not representative at the meso- 
(100–1,000 km2) or regional scale (>10,000 km2) (Sivapalan, 2003). 
Meaning, just as headwater catchments are not a linear superposition of 
soil cores (McDonnell et al., 2021), the meso- or regional scale catch
ment a is not a linear superposition of headwater catchments. Thus 
characterizing the dominant processes at the regional scale does not 
imply an account of the heterogeneity and complexity observed at the 
hillslope scale (Sivapalan, 2003). 

Regional scale perceptual models could have usefulness beyond the 
development of tailored conceptual model structures. In particular, they 
could help identifying regularities and “laws” at the regional scale (e.g. 
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Dooge, 1986; Wagener et al., 2007), including regions of hydrological 
similarity that exert primary controls on hydrological dynamics (e.g. 
Loritz et al., 2018; Ehret et al., 2020), or scaling relationships associated 
to processes aggregation (e.g. Leopold and Maddock, 1953; Blöschl and 
Sivapalan, 1995). Such insights could contribute regional knowledge 
that can be exploited in catchment classification studies (e.g. Gnann 
et al., 2021), or inform “regularization” relationships and constraints for 
improving model realism and parsimony (e.g. Pokhrel et al., 2008; 
Gharari et al., 2014). Despite their potential scope, however, the 
development of regional scale perceptual models has seldom been 
transparent and lacks clear guidance. Dedicated studies that illustrate 
such development are few (e.g. Winter, 2001; Savenije, 2010; Gnann 
et al., 2021). Certainly, expert knowledge plays a role. This is a function 
of personal and subjective experience (Beven and Chappell, 2021), but 
also linked to this is intuition, theoretical background and transfer of 
knowledge from other catchments. 

Here we add and explore the interpretation of in-situ data and how it 
can combine with other forms of expert knowledge to inform perceptual 
model development at the regional scale. While the traditional percep
tual model development based on local fieldwork observations can be 
regarded as “bottom-up” (Sivapalan et al., 2003), our approach based on 
the interpretation of catchment responses is more “top-down”. In 
particular, we base our process understanding on the interpretation on 
the spatial variability of streamflow signatures within a nested catch
ment. We acknowledge that the interpretation of the spatial variability 
of hydrological signatures has been the objective of many studies 
focused on catchment classification (e.g. Wagener et al., 2007; Sivaku
mar et al., 2015). However, these studies have typically adopted a “large 
sample” approach, which resulted in prioritizing the impact of climate at 
the expense of landscape (e.g. Beck et al., 2015; Addor et al., 2018), and 
have relied on general purpose statistical or machine learning ap
proaches (e.g. Peñas et al., 2014; Sivakumar et al., 2015), which were 
generally difficult to interpret. Our reliance on a nested catchment setup 
and on expert knowledge is intended to increase process understanding 

at the regional scale, such as to clarify the interplay between climate and 
landscape in controlling streamflow responses. 

Anticipating which signatures best characterize streamflow vari
ability in any nested catchment, and which dominant processes affect 
them, is not a priori obvious. First, “uniqueness of place” in terms of 
catchment properties or measurements limits our ability to create 
generalizable hypotheses (Beven, 2000). For example, Oudin et al. (2010) 
showed that “seemingly” similar catchments can respond drastically 
different, which required digging beyond commonly used metrics of 
catchment similarity. Secondly, classification and regionalization studies 
have shown that the signatures that best characterize streamflow vari
ability may differ from one region to the other depending on the under
lying dominant processes (e.g. Blöschl et al., 2013; Gupta et al., 2013). 
Thirdly, even the same signatures can respond to different process con
trols in different environments. For example, Gnann et al. (2021) showed 
that the spatial variability of baseflow signatures could be associated with 
soil and sediment texture in regions covered by glacial deposits in north 
United States, compared to soil stratigraphy in the Appalachian Moun
tains in North Carolina, sinkhole density in the Ozarks, and the maturity of 
the landscape represented by geological age in the Oregon Cascades. This 
variability of process controls then motivated different perceptual models 
in these distinct areas. Thus, we suspect that these process controls at the 
regional scale are equivocal for many other signatures. 

Here we demonstrate a systematic approach for perceptual model 
development at the regional scale, using the 27,100 km2 Moselle catch
ment in Europe as a case study. We use 26 stream gauging stations with 26 
years of streamflow records, climatic variables, and landscape properties 
maps. Unlike other systems of its size in Europe, the Moselle has relatively 
low population density (with 150 inhabitants per square kilometer, www. 
fgg-rhein.de), an absence of major lakes and exceptionally good data 
availability. Leveraging these attributes and to show a proof of concept 
with a “simple” regional scale catchment, our objectives are: 

Fig. 1. Moselle catchment with 26 stream gauges and corresponding subcatchments (panel a), maps of elevation (panel b) land cover (panel c) and soil texture 
(panel d). 
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1. To develop a hydrological synthesis for the Moselle catchment in the 
form of a distributed perceptual model of regional scale streamflow 
generating processes.  

2. To outline the key steps of this process as a proof-of-concept for how 
to consider regional scale perceptual model development elsewhere 
using widely available data.  

3. To characterize expert knowledge and illustrate how it can be 
contributed both by experimentalists and modelers in the various 
stages of perceptual model development. 

The paper is organized into six sections. Section 2 presents the study 
area and the data. Section 3 presents the methodology, including the 
selection of streamflow signatures, the climatic and landscape indices, 
and the approaches to identify the influence factors on the selected 
streamflow signatures. Section 4 analyzes the factors influencing the 
selected streamflow signatures, and outlines the Moselle perceptual 
model. Section 5 contains a discussion about the broader implications of 
the proposed approach, including a synthesis of how expert knowledge 
was used in the perceptual model development process. Section 6 con
cludes the paper, providing a synthetic summary of how the objectives 

of the study have been addressed. As an application example of the 
developed perceptual model, Fenicia et al. (2022), hereafter referred to 
as FMM2022, illustrates the development and selection of a distributed, 
yet parsimonious conceptual model. 

2. Study area and data 

2.1. The Moselle catchment 

The study area is shown in Fig. 1. We focus on the catchment with 
outlet in Cochem, 50 km upstream of the confluence with the Rhine 
(drainage distance), with a contributing area of 27,100 km2 (Fig. 1a). 
Elevations range between 60 and 1424 m a.s.l., with 96% of the catch
ment area lying below 600 m (Fig. 1b). Land cover is dominated by forest 
(38%), followed by crop (30%), pasture (20%), developed areas (8%), 
defined here as urban, sub-urban, industrial and other artificial landuses, 
and wetland (4%) (Fig. 1c). In terms of geology, the Moselle catchment 
extends over four main structural units: two geological basins (the Paris 
basin in the center-west and the Sarre-Nahe Bergland Permian basin in the 
east), consisting of mainly sedimentary rocks, and two geological massifs 
(the Vosges massif in the south, culminating at 1424 m a.s.l., and the 
Rhenish massif in the north, reaching an altitude of 816 m a.s.l.), con
sisting mainly of metamorphic rocks. The lithology of the catchment is 
varied, given the extent of the area (see later Fig. 7a). Soil texture shows 
contrasting characteristics across the catchment, with coarse material in 
the mountainous southern part of the catchment, fine materials in the 
central part, and medium to medium-fine materials in the north (Fig. 1d). 

We consider 26 subcatchments based on a selection of stream gauging 
stations (Fig. 1a). Table 1 reports both the “total” and “incremental” area 
of the subcatchments, that is, their entire contributing area, and the in
cremental area from the next upstream subcatchment (hence corre
sponding to the colored regions in Fig. 1a). The hydrometeorology of the 
subcatchments is shown in Fig. 2. Fig. 2a shows their hydrographs, whose 
similarities and differences are analyzed in detail in Section 3.2. Fig. 2b 
represents the subcatchments in Budyko space (Budyko, 1974), which 
highlights the variability in the hydrometeorological conditions in the 
area, with dryness index ID (the ratio between average potential evapo
ration and average precipitation) ranging between 0.5 and 1.2, and 
evaporative index IE (the ratio between average actual evaporation, 
calculated as the difference between average precipitation and stream
flow, and average precipitation) varying between 0.3 and 0.7. The sub
catchments show significant correlation in the Budyko space, with a 
Spearman correlation rs = 0.79, and a corresponding p-value ps well 
below the conventional significance threshold of 5%. 

2.2. Data sources 

The data used in this study are classified into three categories: 
streamflow, climate (precipitation and temperature), and landscape 

Table 1 
List of nested subcatchments within the Moselle catchment, sorted by their total 
area, from smallest to largest. The incremental area indicates the area from the 
next upstream subcatchment (the incremental area is the same as the total area 
for subcatchments without upstream subcatchments).  

Subcatchment name Total area (km2) Incremental area (km2) 

Hentern  101.17  101.17 
Alsdorf  264.07  264.07 
Plein  275.39  275.39 
Boncourt  407.56  407.56 
Pruemzurlay  577.01  577.01 
Gemuend  614.87  614.87 
Nalbach  712.60  712.60 
Kordel  819.57  819.57 
Nomeny  929.29  929.29 
Ettelbruck  1082.35  1082.35 
Luneville  1102.19  1102.19 
Epinal  1225.58  1225.58 
Rosselange  1243.15  835.59 
Metz  1279.61  350.32 
Niedaltdorf  1332.29  1332.29 
Wittring  1702.52  1702.52 
Reinheim  1802.30  1802.30 
Malzeville  2893.31  1791.13 
Bollendorf  3196.27  1499.05 
Toul  3354.94  2129.36 
Fremersdorf  6960.46  1410.76 
Custines  6977.01  728.76 
Hautconcourt  9404.26  1147.63 
Perl  11564.63  917.22 
Trier  23838.03  1275.59 
Cochem  27149.38  2115.21  

Fig. 2. Panel a: Snapshot of the 26 hydrographs. Panel b: position of the subcatchments in the Budyko space, represented by the dryness index ID, and the evap
oration index IE . The red line indicates the theoretical upper bound. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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(maps of elevation, land cover, lithology and soil texture): 

• Streamflow. Streamflow data Q (mm/h) (normalized by the catch
ment area) is considered at 26 stations (Fig. 1a), for the period 
01.09.1989 – 31.08.2015, where we have assumed the 1st of 
September to be the start of the hydrological year. The German data 
are obtained from the German Federal Institute of Hydrology (BfG), 
the Luxembourgish data are obtained from the “Administration de la 
gestion de l’eau”, the French data are obtained from Eaufrance 
(downloaded at hydro.eaufrance.fr). All streamflow time series are 
available at hourly resolution.  

• Climate. Precipitation P (mm/d) and temperature TC (◦C) data are 
obtained from the E-OBS gridded dataset (version 14.0, downloaded 
at www.ecad.eu) (Haylock et al., 2008). This dataset has daily 
temporal resolution and a regular 0.25 × 0.25 degrees grid spatial 
resolution (about 20 × 30 km at the catchment’s latitude). It is based 
on an interpolation of ground station data. Note that for precipita
tion, the daily average of a given day is computed between 6.00 UTC 
of that day and 6.00 UTC of the following day (Haylock et al., 2008). 
The same interval is therefore used in computing daily streamflow. 
Since the precipitation stations used by the E-OBS data set have much 
lower density in the French part of the catchment than in the German 
part, as also apparent in Fig. 1 of Haylock et al. (2008), the precip
itation in the subcatchments with the majority of their areas in 
France (Nietaltdorf, Hauconcourt, Malzeville, Metz, Rosseldange, 
Toul, Custines, Epinal, Luneville, Nomeny, Boncourt, Wittring) is 
recalculated using ground station data (obtained from Météo 
France), interpolated with the Thiessen polygon method. Tempera
ture data are used to derive potential evaporation (EPot) time series, 
using the 1985 Hargreaves equation (Hargreaves and Allen, 2003). 
For the calculation of the climatic indices described in Section 3.3, as 
well as those represented in Fig. 2b, the climatic data concomitant 
with the availability of streamflow data in each subcatchment is 
used.  

• Landscape. Landscape data include maps of elevation, soil, lithology 
and land cover:  

• Elevation. The digital elevation model is obtained from USGS 
HydroSHEDS (resolution 78.4 m). Catchment elevation is shown in 
Fig. 1b.  

• Land cover. The maps is generated using the Corine Land Cover 
European database (clc12, version 18.5, downloaded at land. 
copernicus.eu). Four land cover classes are considered: crop, for
est, pasture, developed areas (urban, industrial, etc.) and wetland 
(Fig. 1c).  

• Lithology. The maps are obtained from different sources 
depending on the country: for France we use the “BD LISA” data
base (version 1, niveau 2, ordre 1, scale: 1:250,000, downloaded at 
https://bdlisa.eaufrance.fr), for Germany we use the “Geologische 
Übersichtskarte der Bundesrepublik Deutschland (GÜK200)” 
(downloaded at www.bgr.bund.de, scale: 1:200,000), for 
Luxembourg the lithology map is obtained by the “Administration 
de la gestion de l’eau” (scale of 1:250,000), for Belgium we use the 
ihme1500 database (version 11, downloaded at www.bgr.bund. 
de, scale: 1:1,500,000). The IHME data has a much coarser reso
lution than the other maps, however only 3% of the catchment 
belongs to Belgium (see above). The lithology maps are combined, 
which resulted in a total of 31 lithology classes (shown later in 
Fig. 7a).  

• Soil. Soil properties are obtained from the European Soil Database 
(version 2.0). The distribution of soil texture (attribute TEXT) into 
fine, medium-fine, medium and coarse attributes is shown in 
Fig. 1d. 

These data are used for the calculation of the metrics defined in the 
following Section. 

3. Methodology 

Our approach to develop a perceptual model characterizing 
streamflow regional variability consists of the following basic steps:  

1. Determine a set of streamflow signatures that characterize key traits 
of streamflow spatial variability 

Fig. 3. Key objectives of the perceptual model characterizing the regional variability of subcatchment responses in a regional scale catchment. Relevant multi-site 
streamflow signatures are related to the spatial variability of climate or landscape, and then interpreted based on dominant processes, hydrological connectivity, and 
relationships between processes. 
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2. Specify the methods that are most appropriate interpret the spatial 
variability of each individual streamflow signature  

3. Identify the landscape or climatic attributes that cause the variability 
of each individual streamflow signature 

4. Synthesize the interpretation of each individual streamflow signa
ture in the form of a distributed perceptual model, which elucidates 
the dominant processes affecting the spatial variability of streamflow 

The intended characteristics of the perceptual model are schemati
cally represented in Fig. 3. In particular, the perceptual model is ex
pected to include the following information: (1) the definition of a key 
set of streamflow signatures that characterize streamflow spatial vari
ability at internal subcatchments, (2) the identification of the main 
landscape or climate controls on the spatial variability of each stream
flow signature. Such identification should then lead to an understanding 
of the climate or landscape variability that matters at that scale, which is 
used to define regions of hydrological similarity, (3) the characterization 
of the dominant processes in each region of hydrological similarity, 
which is derived by interpreting the processes that underlie the vari
ability of individual streamflow signatures, (4) the connectivity between 
processes associated to distinct regions, hence how distinct landscape 
sections connect to each other to generate the overall catchment 
response, and (5) the relationships between spatially variable processes, 
such as how a certain process (e.g. baseflow, runoff or channel routing) 
varies in magnitude depending on landscape properties. The various 
elements of the perceptual model may be associated to varying degrees 
of confidence, which the development process would help in 
characterizing. 

In this section, we describe the definition of streamflow signatures 
(Section 3.1), their potential process controls based on previous litera
ture (Section 3.2), and the definition of landscape and climatic indices 
used in subsequent analyses (Section 3.3). 

3.1. Selection of streamflow signatures 

Our definition of streamflow signatures starts with a visual inspec
tion of the 26 hydrographs designed to single out hydrograph similar
ities and differences. Fig. 4 exemplifies the key results of this analysis: 

1. Streamflow magnitude can vary significantly between subcatch
ments. For example, Fig. 4a shows the hydrographs at Epinal and 
Luneville, two neighboring subcatchments in the south of the 
Moselle catchment. The streamflow at Epinal appears to be system
atically larger than the streamflow at Luneville. 

2. There are noticeable differences in baseflow versus quickflow pro
portions between hydrographs. For example, Fig. 4b shows the dif
ference between the hydrographs at Niedaltdorf (on the river Nied), 
and Reinheim (on the river Biel). The two subcatchments are located 
in the center east of the Moselle catchment and they are closely 
spaced (the outlets are 50 km apart). It is noticeable that Niedaltdorf 
has larger baseflow (and lower peakflow) than Reinheim.  

3. The time it takes for hydrograph to rise in response to a rainfall event 
was found to vary significantly between subcatchments. For 
example, Niedaltdorf and Nomeny appear to have similar baseflow 
characteristics, but Niedaltdorf appears to have a flashier response 
than Nomeny (Fig. 4c). Also these two subcatchments are closely 

Fig. 4. Selected hydrographs showing some of the similarities and differences in the major subcatchments for: flow magnitude (panel a), partitioning between 
baseflow and quickflow (panel b), response time (panel c), time lag between hydrographs (panel d). 
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spaced (they have a border in common), and the subcatchment with 
slower response (Nomeny) is the smallest of the two (929 vs 1332 
km2).  

4. Hydrographs at consecutive gauges on the river network, if the areas 
of the corresponding subcatchments are not significantly different, 
can be very similar. For example, Fig. 4d shows the case of Cochem 
(the catchment outlet) and Trier (50 km upstream in linear distance). 
Although the two hydrographs are similar, they clearly show an 
offset, with the downstream hydrograph lagging behind.  

5. The hydrographs also present similarities. In particular, they all 
appear share a similar seasonal behavior, with higher flows during 
winter, and lower flows during summer, as apparent for example in 
Fig. 2. 

These visual perceptions have motivated the selection of the 
following streamflow signatures, which are more specifically defined in 
Appendix A:  

1. Streamflow average: Q (mm/yr), which is simply the long term 
average of streamflow observation  

2. Baseflow index: QBFI (-), which indicates the proportion of baseflow 
over total flow  

3. Time-to-peak: QTTP (h), designed to reflect the average duration of 
the rising limbs of the hydrograph  

4. Relative lag: QLag (h), which quantifies the time shift between two 
hydrographs  

5. Half streamflow date: QHSD (d), defined as number of days on which 
half of the yearly streamflow has passed starting from the beginning 
of the hydrological year (i.e. 1st of September, see Section 2.2), and 
intended to capture streamflow seasonality 

For further analyses, it is important to keep streamflow signatures 
that are relative independent and show sufficient variability. Fig. 5 
shows that these conditions apply for the first three signatures, con
firming the visual impressions that they reflect distinctive traits of 
streamflow variability. In particular, the Spearman correlation values rs 
are relatively low, and the p-values ps are relatively large, indicating 
limited correlation significance. The relative lag signature is only 
applicable to pair of subcatchments, and therefore is not directly com
parable with the other signatures. The half streamflow date showed very 
little variability (it varied between 23-Jan to 9-Feb for all subcatch
ments), which confirmed the visual impression that hydrographs have 
similar seasonal behaviour, and motivated its exclusion in successive 
analyses. 

It is worth pointing out that the first three signatures listed above 
broadly correspond to the hydrograph characteristics that the three 
components of the Kling Gupta efficiency (KGE) aim to optimize (Gupta 
et al., 2009). In particular, the KGE aims at matching the overall volume 
of flow, spread of flow, and timing of the hydrograph, which are char
acteristics that can be associated to the first three signatures listed 
above. 

Fig. 5. Scatter plot of selected streamflow signatures. The correlation is low, meaning that the signatures are relatively independent. Note also that the signatures 
present strong variability (e.g. streamflow varies between about 200 and 1000 mm/yr). 
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3.2. Approaches to identify process controls on selected streamflow 
signatures 

After having identified a set of key streamflow signatures, we ask the 
following two sets of questions: (1) what are their potential process 
controls? And more specifically, are these controls already a priori 
obvious? And (2) which methods are most appropriate to identify them? 
Can available hydrological experience help define tailored and inter
pretable methods for analyzing individual streamflow signatures, as 
opposed to general purpose statistical or machine learning approaches? 
In order to answer these questions, we synthesize previous studies that 
have analyzed our selection of streamflow signatures. 

3.2.1. Streamflow average 
Explaining the spatial variability of streamflow average is part of the 

more general problem of exploring the geographical variability of the 
long term water budget (e.g. Budyko, 1974; Dooge, 1992; Milly, 1994). 
The long term water budget can be expressed as: 

Q = P − EAct − G (1) 

where the overbar is used to indicate the long term averages and Q, 
P, EAct and G represent streamflow, precipitation, actual (total) evapo
ration, and groundwater outflow respectively. 

From Eq. (1), it is clear that the spatial variability in Q is due to the 
combination of P, EAct and G. However, in which proportion these three 
terms contribute to this variability, and if one of them eventually 
dominates on the other, is not a priori clear. Moreover, while P can be 
measured, the other two terms need to be somehow estimated. 

The long term evaporation EAct has been related to various climatic 
and landscape factors. Perhaps the simplest way of representing these 
dependencies, is by relating EAct to the average potential evaporation 
EPot by a simple “stress factor” (e.g. Peng et al., 2019). The more popular 
Budyko model (Budyko, 1974) relates EAct to EPot and P. There are 
several approximately equivalent formulations of the Budyko model (e. 
g. Daly et al., 2019), including the one parameter Turc-Mezentsev for
mula (Turc, 1954; Mezentsev, 1955), widely used in many applications 
(e.g. Bouaziz et al., 2018; Andréassian and Sari, 2019): 

EAct

P
=

1
(

1 +

(
P

EPot

)
b

)
1
b

(2)  

where b is a model parameter. Such simple formulation has been shown 
to leave various degrees of unexplained variability depending on the 
applications, which has been attributed to various unaccounted climate 
or landscape characteristics in different studies, including the charac
teristics of vegetation, seasonality, soil properties and topographic 
controls (e.g. as reviewed in Greve et al., 2016). 

Groundwater flow, which is the other main unknown in Eq. (1), can 
be an important component of the long term water balance. For 
example, Schaller and Fan (2009) made an extensive investigation on 
1555 catchments in the United States, and found that groundwater im
ports and exports can be significant, primarily driven by climate (with 
arid basins more affected), basins size (with larger basins being more 
self-contained), and bedrock permeability (with high bedrock perme
ability leading to larger groundwater import or exports). In the Meuse 
catchment, neighbouring the Moselle catchment, Bouaziz et al. (2018) 
found that several subcatchments are affected by significant ground
water flow, which was attributed to the effect of lithology. The possible 
significance of groundwater flow has motivated its inclusion even in 
very simple conceptual models (Le Moine et al., 2007). 

Based on the description above, our approach to identify the process 
controls on the streamflow average signature in the Moselle catchment is 
as follow:  

• We will use Eq. (1) as the framework to explain the variability of the 
regional water budget in the Moselle catchment  

• Our investigation will start with regressing Q with P, which is 
measured. We will then include EAct, estimated using simple (e.g. a 
simple stress factor) to more complex (e.g. Eq. (2)) formulations, and 
proceed by accounting for G, which could be identified leveraging 
the nested catchment setup, which implies that the water “lost” at 
some subcatchments needs to be “gained” at some neighbouring 
subcatchments (Bouaziz et al., 2018). In line with the top-down 
approach, there will be no need to investigate further, once a 
reasonable fit to the observed Q is obtained. 

In summary, Eq. (1) provides the framework to explore the spatial 
variability of Q, but to what extent it is possible to explain this vari
ability, and in which proportion P, EAct and G contribute to it, is not a 
priori obvious. We will thus examine available data to establish a 
plausible explanation for the spatial variability of streamflow average. 

3.2.2. Baseflow index 
Several studies have indicated bedrock as the most important control 

on the variability of the baseflow index (BFI) (e.g. Lacey and Grayson, 
1998; Longobardi and Villani, 2008; Bloomfield et al., 2009). This 
finding has an intuitive explanation, as “groundwater is stored in the 
rocks, especially if they are highly fractured, and this contributes to 
baseflow” (Lacey and Grayson, 1998). However, different bedrock fea
tures can describe the relation of bedrock to baseflow characteristics in 
different places. For example, in the Alzette catchment in Luxembourg 
the variability of baseflow index was correlated to lithology types 
(Pfister et al., 2017), whereas in the Oregon Cascades it was explained 
by the maturity of the landscape rather than the lithology type (Tague 
and Grant, 2004). 

Besides bedrock properties, a plethora of additional landscape or 
climate controls was found responsible for the regional variability of 
baseflow index in different studies (e.g. Price, 2011). Using 8600 
catchments in United States, Santhi et al. (2008) found that “relief” 
(maximum minus minimum elevation in the catchment) was the most 
strongly correlated variable to BFI, with lower relief leading to higher 
baseflow; using 3394 catchments worldwide, Beck et al. (2013) found 
that the BFI was best related to the mean and seasonality of potential 
evaporation, mean annual air temperature, and mean snow water 
equivalent depth. They also observed that their results seemed to 
contradict the perception of a relationship between slope or lithology 
and BFI. Using 103 catchments in Europe, Schneider et al. (2007) found 
that soil type could be used to predict baseflow index, although the 
goodness of fit decreased in the southern areas; using 67 catchment in 
Belgium, Zomlot et al. (2015) found that baseflow index was mostly 
affected by vegetation cover; using 12 catchments in Tanzania, Mwa
kalila et al. (2002) found that baseflow index was positively correlated 
with the ratio of precipitation on potential evaporation. 

Based on the review above, the following approach is adopted to 
explain the variability of BFI in the Moselle:  

• We will start from regressing BFI to easily accessible metrics of 
catchment similarity, including topography, soil and land use. 

• If results will not be satisfactory, we well sort the variability of li
thology classes into a restricted number of relative bedrock perme
ability classes, based on expert judgment, and regress these 
properties to baseflow index. This attempt is motivated by the 
finding that lithology was found to be an important control on 
streamflow variability in the Alzette mesoscale catchment in 
Luxembourg, which is part of the Moselle (Hellebrand et al., 2007; 
Pfister et al., 2017). It is however unclear whether these findings will 
hold true at the much larger regional scale. 

In summary, the variability of BFI depends in principle on multiple 
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controls, to the point that it may be even hazardous to rely on the intuition 
that they can be related to bedrock properties. Our approach will there
fore be relatively inclusive in terms of potential controls, and potentially 
require a careful assessment of bedrock hydrological properties. 

3.2.3. Time-to-peak 
The time span of the rising limb of the hydrograph has been indicated 

by various terms, including time-to-peak, time of concentration, lag-time, 
catchment response time, with various (sometimes overlapping) defini
tions, some considering the time difference between rainfall and runoff 
events, and other considering hydrograph properties alone (e.g. Gericke 
and Smithers, 2014; Beven, 2020). In spite of their different definitions, 
such timing signatures are strongly correlated to each other, as they share 
the same intention of characterizing the duration of a hydrograph pulse 
response (e.g. see Fig. 2 in Gericke and Smithers, 2014). In this section, we 
use “time-to-peak” to collectively refer to such metrics. 

Numerous previous studies have related time-to-peak to various 
observable catchment properties. The most widely used models used 
multiplicative relationships between topography related properties, 
suggesting that the time-to-peak increases with basin size and decreases 
with basin slope (e.g. Taylor and Schwarz, 1952; Gericke and Smithers, 
2014; Beven, 2020). The characteristics of the hypsometric curve, an 
integrated measure of catchment topography, have also been success
fully related to time-to-peak, as an alternative to other topography- 
related measures (Harlin, 1984; Luo and Harlin, 2003). Rodríguez- 
Iturbe and Valdés (1979) developed a theoretical relationship between 
time-to-peak and the Horton number, in the attempt to overcome the 
conceptual limitations of the “so many and not very illuminating re
gressions we keep using in the field”. Such theoretical relation, however, 
has not found high predictive value, as noted for example by Howard 
(1990), who found that Horton’s numbers “collectively account for only 
5 per cent of the explained variance in the estimating equations”. His 
results instead confirmed that terms related to catchment size and 
average channel gradients provided the greatest predictive power. 

Some studies showed that underground flow pathways, and the 
porous media related to them (soil and lithology), can have a significant 
impact on time-to-peak. Dunne (1978) showed that hydrographs gener
ated by infiltration excess overland flow had times-to-peak 40 times 
shorter than hydrographs generated by subsurface stormflow. Gaál et al. 
(2012) used 396 Austrian catchments and showed that karst catchments 
as well as catchments dominated by schist (phyllite) had much more 
delayed responses compared to other catchments with marl and clay li
thology. In a study on 3 experimental catchments with different lithology, 
Wrede et al. (2015) showed that the catchment on schist had a time-to- 
peak in the order days, whereas the other two catchments on clay and 
sandstone responded near coincidently with the rainfall. 

Based on the review above, we will adopt the following approach to 
investigate time-to-peak variability in the Moselle catchment:  

• We will look for a multiplicative relationship between landscape 
attributes.  

• The relevant dependent variables in the regression models will be 
determined through stepwise regression (e.g. Berger and Entekhabi, 
2001), a common method that involves progressively adding vari
ables based on how well they improve the fit. This approach has the 
advantage that the order in which variables are added provides in
formation on their influence. However, it may not be able to capture 
complex relationships between data beyond the one envisaged. 

In summary, similarly to the previous streamflow signatures, it 
would be difficult to a-priori guess which landscape or climatic prop
erties would influence the spatial variability of the time-to-peak in the 
Moselle catchment. As this signature was described primarily using 
multiplicative relationships in previous work, we will adopt this 
framework to look for suitable fitting relationships. 

3.2.4. Relative lag 
The delay demonstrated by flow as it travels downstream along a 

river reach is a relatively well understood phenomenon in river hy
draulics. The lag between hydrographs at successive points along a 
channel can be modeled by the so called Saint-Venant equations, which 
are based on the conservation of mass and momentum in channels, and 
are well described in many hydrology and hydraulics textbooks (e.g. 
Henderson, 1966). This route, however, is both data demanding, as it 
requires channel geometry and roughness information, and potentially 
computationally intensive, depending on the simplifications one is 
prepared to accept. It is therefore impractical for applications such as the 
use of the perceptual model to inform a conceptual model, particularly 
for an initial stage where the main building blocks of the conceptual 
model are yet unrefined, and their definition in successive model 
development stages may require computationally intensive calibrations 
and comparisons of multiple model variants. 

These arguments raise the question whether there are there simpler, 
even if not as accurate, approaches for modeling such delay. The answer 
may come from geomorphology, and in particular, from the scaling laws 
that connect hydraulic and geomorphological properties of natural 
rivers (e.g. Leopold and Maddock, 1953; Rodríguez-Iturbe and Rinaldo, 
1997). Leopold and Maddock (1953) empirically observed that in a 
downstream direction, average streamflow velocity v increases 
following a power law relationship: 

v ∝ qα (3)  

where q is the average streamflow (not normalized by the catchment 
area). Empirical investigations returned a value of α = 0.1. This rela
tively low value indicates that the velocity tends to remain constant or 
increase slightly in the downstream direction. Considering that, at a first 
approximation, q increases linearly with the catchment area A (e.g. 
Rodríguez-Iturbe and Rinaldo, 1997) (q ∝ A), and that following a ki
nematic wave approximation, celerity c, hence the flood wave propa
gation speed, is proportional to velocity (v ∝ c) (e.g. Henderson, 1966), 
based on Eq. (3), one can assume c ∝ Aα and therefore: 

QLag(QA,QB) ∝
LAB

Aα
AB

(4)  

where LAB is the flow distance between two locations A and B, and AAB is 
the average of the catchment areas at the two locations. This relation
ship accounts for the fact that the celerity increases (and therefore the 
lag reduces) for larger catchments (which have on average larger flow). 

Our proposed approach is therefore as follows:  

• We will identify successive gauges for which the intermediate 
contributing area is proportionally small and calculate the hydro
graph lag. 

• We will regress the lags calculated for different pairs of subcatch
ments using Eq. (4). 

In summary, in contrast to the other three streamflow signatures, the 
relative lag between hydrographs can be estimated using well established 
river hydraulics methods. A-priori unclear, however, is to what degree 
simplified approaches, such as relying on Eq. (4), have predictive value. 

3.3. Selection of climatic and landscape indices 

Our selection of climatic and landscape indices is listed in Table 2. In 
terms of climatic indices we restricted our selection to average precip
itation and potential evaporation, where the average was extended to 
the streamflow data availability period for each subcatchment (see Fig. 3 
in FMM2022). We did not consider snow related indices (e.g. Sawicz 
et al., 2011; Razavi and Coulibaly, 2013) as only a small fraction of 
precipitation is falling as snow (below 5% in each subcatchment), as 
well as indices reflecting the phase offset between precipitation and 
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evaporation (e.g. Berghuijs et al., 2014), as catchments are in the same 
climatic region, and, as already observed (Section 3.1), hydrographs 
have similar seasonal behaviour. 

The landscape indices are extracted using the four maps described in 
Section 2.2 (topography, land use, lithology, and soil texture). As we use 
several landscape indices, to minimize confusion, we represent them 
with the notation L(Y)

X , where L stands for landscape index, Y indicates 
the underlying map (Top, Lnd, Lit and Stx respectively), and X indicates 
the specific attribute (see Table 2 for the complete list). 

Our selection of landscape indices is justified as follows. In terms of 
topography, indices such as L(Top)

Area , L(Top)
ElAvg, L(Top)

ElRel and measures of slope are 
among the most commonly used in studies examining the spatial vari
ability of streamflow signatures (see Ali et al. (2012) for a review). Indices 
such as L(Top)

DrDen, L(Top)
DstD and L(Top)

DstG are typical in catchment geomorphology 
(Rodríguez-Iturbe and Rinaldo, 1997) and are also used in some classi
fication studies (see Ali et al. (2012) for a review). The indices L(Top)

Wet , 
L(Top)

Hil , L(Top)
Plt are the fractions of topographical “wetland”, “hillslope” and 

“plateau” introduced by Gharari et al. (2011), where “wetland” is the 
landscape with “height above nearest drainage” lower than a specified 
threshold (here 10 m), and the rest of the landscape is partitioned into 
“hillslope” and “plateau” if the slope is higher or lower than a specified 
threshold (here 11%, according to Gharari et al. (2011)). 

Fractions of land cover types as the ones defined here (Table 2) are 
used in many studies (e.g. Zhang et al., 2004; Yadav et al., 2007; Oudin 
et al., 2008; Razavi and Coulibaly, 2013; Kuentz et al., 2017). Land 
cover was also expressed by alternative metrics, such as the leaf area 
index (e.g. Sawicz et al., 2011; Addor et al., 2017), or metrics oriented to 
reflect the vegetation biomass (e.g. Jencso and McGlynn, 2011), which 
here we did not consider. 

Lithology is often represented directly through the fraction occupied 
by the lithological formations (e.g. Bloomfield et al., 2009; Jencso and 
McGlynn, 2011; Fenicia et al., 2016; Kuentz et al., 2017). As these for
mations can be many, it is useful to group them into more general classes 
(e.g. Yadav et al., 2007; Hellebrand et al., 2008; Dal Molin et al., 2020). 
The formulation of suitable lithology indices is explored in Section 4.1.2. 

We used soil texture for characterizing soil data (Table 2), as com
mon to many studies (e.g. Addor et al., 2017; Kuentz et al., 2017). 
Alternative soil characteristics proved useful for hydrological purposes, 
such as the “Hydrology Of Soil Types” classification system developed 

for the United Kingdom (Boorman et al., 1995), and used in several 
studies (e.g. Schneider et al., 2007; Yadav et al., 2007; Ali et al., 2012), 
but such data is generally not available in other regions. 

Although not necessarily exhaustive, compared to previous studies on 
streamflow signature variability, our selection of landscape indices is 
rather inclusive. For example, it has not been uncommon to base the 
interpretation of streamflow spatial variability on topography information 
alone (see Ali et al. (2012) for a review). Moreover, such indices are based 
on widely available information, and therefore have broad applicability. 

4. Result and interpretations 

The following sections present the identification of the process 
controls on the 4 identified streamflow signatures (Section 4.1), and 
their synthesis into a regional scale perceptual model of the Moselle 
catchment (Section 4.2). Appendix B includes a correlation analysis 
between all landscape indices, climatic indices and streamflow signa
tures, which provides a broad overview of various dependencies and 
complements the targeted analyses presented in Section 4.1. In order to 
capture potentially nonlinear dependencies we used the Spearman cor
relation rs, for which a significance p-value threshold ps < 5% is typi
cally assumed. 

4.1. Identification of process controls on streamflow signatures 

4.1.1. Explaining variability in “streamflow average” 
As described in Section 3.2.1, Eq. (1) provides the framework to 

explore the variability of the long term water budget. Our approach to 
identify the main influence factors on the variability in Q proceeded by 
accounting for P, EAct and G, until a sufficient fit to the observed Q was 
achieved. The models here proposed were tested with least squared 
regression and assessed in terms of Nash and Sutcliffe efficiency, FNS. 

We started with a very simple model where Q is related to P and the 
other terms are combined into a single constant b: 

Q = P − b (5) 

This model already provided an exceptionally good performance, 
with FNS = 0.91. This relatively high performance indicated that the 
margin of improvement was small. As described in Section 3.2.1, an 
obvious attempt to evolve Eq. (5) was to better characterize the evap
oration term, by including its potential controls. As discussed in Section 
3.2.1, potential evaporation is a first order control on actual evapora
tion, and a simple way to account for its effect is as follows: 

Q = P − bEPot (6)  

where b in this case represents the proportionality between potential 
(EPot) and actual evaporation. This model resulted into FNS = 0.87, and 
therefore did not improve the fit compared to Eq. (5). 

Finally, we considered the Budyko model of Eq. (2), which, as dis
cussed in Section 3.2.1, is an established approach to represent the long 
term catchment water balance: 

Q = P −
P

(

1 +

(
P

EPot

)
b

)
1
b

(7)  

where b was treated as a calibration parameter. This model returned FNS 
= 0.90, which is intermediate between the two previous models. 

Fig. 6a shows the excellent correlation between Q and P (Spearman 
correlation rs = 0.92, and corresponding p-value ps close to zero, indi
cating high significance), which suggested P as the dominant control on 
Q, and automatically downplayed other potential controls. Fig. 6b shows 
the poor correlation between actual (difference between observed pre
cipitation and streamflow long term averages) and potential 

Table 2 
List of climatic and landscape indices. Lithology indices are defined in Section 
4.1.2.  

Symbols Units Description 

P  (mm/ 
yr) 

Precipitation average 

EPot  (mm/ 
yr) 

Potential evaporation average 

L(Top)
Area  

km2 Subatchment total area 

L(Top)
ElAvg  

m a.s.l. Average elevation 

L(Top)
ElRel  

m Average elevation relative to the outlet of 
the subcatchment 

L(Top)
Sl05 ,L(Top)

Sl50 ,L(Top)
Sl95  

– 5%, 50% and 95% slope quantiles 

L(Top)
DrDen  

km− 1 Drainage density 

L(Top)
DstD  

km Maximum drainage distance 

L(Top)
DstG  

km Geometric distance from point with 
maximum drainage distance to outlet 

L(Top)
Wet ,L(Top)

Hil ,L(Top)
Plt  

– Fraction of wetland, hillslope and plateau 
(based on topography) 

L(Lnd)
Crp ,L(Lnd)

For ,L(Lnd)
Pas ,L(Lnd)

Dev ,L(Lnd)
Wet  

– Fractions of crop, forest, pasture, 
developed land and wetland 

L(Lit)
L ,L(Lit)

M ,L(Lit)
H  

– Low, medium and high bedrock 
permeability 

L(Stx)
Fin ,L(Stx)

MeF ,L(Stx)
Med ,L(Stx)

Crs  
– Fine, medium-fine, medium and coarse 

soil texture  
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evaporation, which explains why accounting for EPot in Equations and 
did not improve the fit. 

The relatively good fit obtained with the models above suggested a 
small influence of G. Hence, concerning the long term water balance, it 
appeared reasonable to assume that the subcatchments are watertight. 

4.1.2. Influence factors on the “baseflow index” signature 
The correlation between QBFI and climatic indices, or landscape 

indices based on topography, land use and soil was generally low 
(Spearman correlation rs ≤ 0.55). We therefore embarked into the task 
of sorting the variability of lithology into relative permeability classes 
(Section 3.2.2). In particular, we defined three permeability classes of 
low, medium and high permeability, represented with the symbols L(Lit)

L , 
L(Lit)

M , and L(Lit)
H respectively (Table 2). Using expert judgment, as outlined 

below, we reclassified each of the lithology classes in one of these three 
permeability classes. 

Table 3 lists the lithological classes sorted by the area they occupy in 
the Moselle catchment. The first 15 formations already occupy 95% of 
the catchment. With reference to these formations, the following ratio
nale was used for their classification: formations such as marl, schist, 
dolomite rock, and crystalline basement were considered as low 
permeability, as formed by fine particles or hard rock; formations such 
as sandstone, alluvium, sand, gravel and conglomerate were considered 
as high permeability, as notably capable of storing and transmitting 
water; limestone was considered as medium permeability, as interme
diate between sandstone and marl; mixed formations were considered as 
medium permeability if the permeable formation was mentioned first (e. 
g. sandstone and marl), and low permeability if the impermeable for
mation was mentioned first (e.g. marl and sandstone). The original li
thology map and the final bedrock permeability map are shown in Fig. 7. 

Fig. 8a shows that there was a strong and highly significant corre
lation (rs=0.84, ps close to zero) between baseflow index QBFI and the 
fraction of bedrock with high permeability L(Lit)

H . Such relationship was 
close to linear, as the Pearson correlation was also high (rp=0.87), and 
could therefore be expressed as follows: 

QBFI ∝ a+ L(Lit)
H (8)  

where ∝ is the proportionality sign. 
This relationship lent itself to an obvious interpretation, as high 

bedrock permeability favors groundwater flow, which produces base
flow. An obvious attempt to improve Eq. (8) was therefore to consider 
also medium permeability bedrock into the equation, as this also may 
contribute to baseflow, although to a lesser extent. Hence, we consid
ered the following equation: 

QBFI ∝ a+ L(Lit)
H + bL(Lit)

M (9) 

Optimizing the coefficients to minimize least squares resulted in 
some improvement, (rs=0.89, rp=0.90), and an optimized parameter b 
= 0.30 (Fig. 8b). 

4.1.3. Influence factors on the “time-to-peak” signature 
The pairwise correlation analysis in Table A1 showed that QTTP did 

not correlate strongly with any of the selected indices. We therefore 
explored multiplicative relationships between landscape attributes 
using stepwise regression (as anticipated in Section 3.2.3). The QTTP 

Fig. 6. Correlation between precipitation and streamflow averages (panel a), and potential and actual evaporation averages (panel b) at all subcatchments. Pre
cipitation appears to be a strong influence factor on streamflow, whereas potential evaporation shows no influence on actual evaporation. 

Table 3 
Reclassification of lithology classes (sorted by decreasing area that they occupy 
in the Moselle catchment) into permeability classes. The area fraction indicates 
the “weight” of each reclassification decision. The cumulative area fraction 
column shows that classes 1–15 already make up for 95% of the catchment area. 
Low, medium and high permeability classes make up for 50%, 25% and 24% of 
the catchment area respectively.  

Lithology class Ind. Area 
fraction 

Cum. area 
fraction 

Permeability 

Limestone 1  17.22%  17.22% Medium 
Marl 2  13.46%  30.69% Low 
Schist 3  13.07%  43.75% Low 
Dolomite rock 4  12.49%  56.24% Low 
Sandstone 5  11.60%  67.84% High 
Alluvium 6  5.93%  73.77% High 
Crystalline basement 7  4.23%  77.99% Low 
Sandstone and 

conglomerate 
8  3.96%  81.95% High 

Sandstone and marl 9  3.02%  84.98% Medium 
Sandstone and siltstone 10  2.26%  87.24% Medium 
Quarzite 11  1.74%  88.98% Low 
Sandstone and schist 12  1.65%  90.63% Medium 
Limestone and marl 13  1.56%  92.19% Low 
Sand and gravel 14  1.50%  93.69% High 
Silt 15  0.83%  94.53% Low 
Sandstone, siltstone and 

schist 
16  0.80%  95.33% Medium 

Coal 17  0.72%  96.06% High 
Marl and limestone 18  0.72%  96.77% Low 
Volcanic rock 19  0.59%  97.37% Low 
Arkose 20  0.56%  97.92% Low 
Sandstone, conglomerate 

and marl 
21  0.49%  98.42% Medium 

Gravel and sand 22  0.31%  98.72% High 
Siltstone, sandstone and 

schist 
23  0.29%  99.01% Low 

Marl and dolomite 24  0.25%  99.26% Low 
Marl and sandstone 25  0.17%  99.43% Low 
Silt and schist 26  0.14%  99.57% Low 
Sand 27  0.12%  99.68% High 
Siltstone 28  0.11%  99.79% Low 
Plutonic rock 29  0.11%  99.90% Low 
Conglomerate 30  0.06%  99.96% High 
Schist and sandstone 31  0.04%  100.00% Low  
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measured at Metz was an apparent outlier since it had a value of 86.5 h 
and was 4.7 standard deviations away from the mean of the other sub
catchments. Therefore, we removed it from the subsequent analysis. 

Table 4 reports the best three empirical relations for the time-to-peak 
signature QTTP obtained with one to four variables. Table 4 (first col
umn) shows that when going from one to four variables, the Spearman 
correlation rs increased from 0.58 to 0.85; the p-values were well below 
the significance threshold already for the single variable correlations, 
and approached zero when multiple variables were considered. Besides 
the fit to the data, an important consideration in order to identify a 
plausible relationship was its interpretability. A relationship that 
appeared to fulfill such prerequisites was represented by the best per
forming equation (rs = 0.78) using three landscape indices: 

QTTP ∝ a+
L(Top)

DstG

L(Lnd)
Dev L(Top)

Sl05

(10)  

suggesting that that the time-to-peak increased with increasing distance, 
with decreasing slope and fraction of developed land use. The de
pendency on the first two variables was reflected in many time-to-peak 
models, as reviewed in Section 3.2.3, and the inverse dependency on 
developed land was intuitive, as urbanization causes faster drainage. It is 
also reassuring that the variables in Eq. (10) appeared recurrently also in 
the lower dimensional relationships shown in Table 4. 

4.1.4. Influence factors on the “hydrographs relative lag” signature 
Based on the analysis described in Section 3.2.4, we started by 

assuming that the lag between hydrographs at two points along the river 
network A and B, QLag, increases proportionally with the flow distance 
between A and B, LAB: 

QLag(QA,QB) ∝ LAB (11) 

Based on the assumption that celerity should increase slightly 

Fig. 7. Reclassification of 31 lithology classes into 3 relative permeability classes, based on expert judgment.  

Fig. 8. Correlation between high bedrock permeability and baseflow index (panel a), and correlation between a combination of high and medium bedrock 
permeability and baseflow index (panel b). Relative bedrock permeability appears to be a strong influence factor on baseflow index. 

Table 4 
Combination of variables that provide the best fit to the time-to-peak signature (QTTP). Only multiplicative types of relationships are used. The best fit using three 
variables suggests that QTTP increases with geometric distance and decreases with the fraction of developed land use and with the 5% quantile of the slope.   

Best fit Second best Third best 

1 variable 1
L(Top)

Sl05  

rs = 0.58  L(Lnd)
Wet  

rs = 0.57  L(Top)
DstD  

rs = 0.56  

2 variables L(Lnd)
Wet

L(Top)
Sl05   

rs = 0.71  L(Top)
DstG

L(Lnd)
Dev   

rs = 0.69  L(Lnd)
Wet

L(Top)
DrDen   

rs = 0.67  

3 variables L(Top)
DstG

L(Lnd)
Dev L(Top)

Sl05   

rs = 0.78  L(Top)
DstD

L(Lnd)
Dev L(Top)

Sl05   

rs = 0.78  L(Top)
DstG

L(Lnd)
Dev L(Lnd)

Pas   

rs = 0.77  

4 variables L(Top)
DstG L(Lnd)

For

L(Lnd)
Dev L(Top)

ElRel   

rs = 0.85  L(Top)
DstG L(Lnd)

Sl95

L(Lnd)
Dev L(Top)

ElRel   

rs = 0.85  L(Top)
DstG L(Lnd)

Wet

L(Lnd)
Dev L(Top)

Sl05   

rs = 0.84   
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downstream, as indicated by Eq. (3), Equation was compared with the 
following expression: 

QLag(QA,QB) ∝
LAB

Aα
AB

(12)  

where AAB is the average of the subcatchment areas at A and B, and the 
exponent α was fixed at 0.1, as suggested by previous studies (Section 
3.2.4). This relationship accounted for the fact that the celerity increases 
(and therefore the lag reduces) for larger catchments (which have on 
average larger flow). 

These two relationships are compared in Fig. 9. The markers are 
color coded according to the ratio between area of the downstream and 
upstream subcatchments, with darker color indicating higher ratio. 
Darker dots should represent pairs where lateral inflow in between 
stations is smaller, and therefore be more representative. 

The Spearman correlation coefficient rs for Eqs. (11) and (12) were 
0.49 and 0.54, whereas the corresponding p-values were 18% and 14% 
(the Pearson linear correlations rp were higher at 0.74 and 0.79 
respectively), showing that the variability of QLag was to a certain extent 
captured by the two models, and Eq. (12) was an improvement 
compared to Eq. (11), although considerable uncertainty remained. 
These results indicated that Eq. (12) provides a first order approxima
tion of QLag, which spares from the use of much more complex flow 
routing models, when a coarse level characterization of catchment 
behaviour is needed, such as in the development of parsimonious and 
computationally efficient conceptual models. 

4.2. A perceptual model of the Moselle catchment 

Fig. 10 presents our perceptual model of the Moselle catchment, 
which synthesizes our understanding of the spatial variability of 
streamflow in the Moselle subcatchments and its underlying process 
controls, according to the perceptual model objectives represented in 
Fig. 3. The main traits of streamflow regional variability were distilled 
into four streamflow signatures, namely the streamflow average Q, the 
baseflow index QBFI, the time-to-peak QTTP, and the relative lag between 
hydrographs at successive stations QLag. These streamflow signatures 
appeared to respond to distinct process controls: 

• Differences in the amount of streamflow observed at different sub
catchments were related to the spatial variability of precipitation 
(Section 4.1.1). Hence, our perceptual model considered spatially 
distributed precipitation, at the subcatchment resolution.  

• Variability in baseflow vs. quickflow partitioning was mainly 
attributed to the influence of lithology (Section 4.1.2). Our process 
interpretation was that lithology affects bedrock permeability. In 
particular, with increasing permeability, deep percolation and 
groundwater flow are progressively more dominant. As a result, our 
perceptual model partitioned the landscape in distinct bedrock 
permeability classes (low, medium and high) associated to runoff 
generating processes that determine distinct hydrograph reactions 
(fast, both fast and slow, and slow respectively). 

• The time-to-peak could be related to topography and land use (Sec
tion 4.1.3). In particular, time-to-peak was found to increase with 
basin size, and to decrease with basin slope, and with a larger area of 
developed (e.g. urban) land. The relation with basin size and slope 
was consistent with most time-to-peak models (Section 3.2.3). We 
motivated the relationship to developed land by considering that 
urbanization often results into improved drainage, which causes a 
faster catchment response. In our perceptual model, the process 
controls on the time-to-peak were schematically represented through 
subcatchment specific lags (marked in blue in Fig. 10).  

• The hydrograph lag due to channel routing could be approximated 
using a simple relationship, as increasing with the length of a river 
stretch and decreasing with the average flow (Section 4.1.4). This 
relationship, which is based on a geomorphologic scaling law (Sec
tion 3.2.4), can be adopted as a first approximation instead of more 
complex (although potentially more accurate) routing models. In our 
perceptual model, these routing effects were schematically repre
sented using channel reach specific lags (marked in red in Fig. 10).  

• Regional groundwater flow did not appear to be a dominant process 
(Section 4.1.1). Hence, our perceptual model purposely omitted this 
process and approximated the subcatchments as watertight.  

• Vegetation, potential evaporation, and soil did not appear to affect 
the variability of any of the selected streamflow signatures (Section 
4.1.1 and Appendix B). Our perceptual model, therefore, did not 
distinguish between vegetation and soil types. 

We argue that this perceptual model was not a priori obvious. In 
different places, streamflow spatial variability was best characterized by 
different streamflow signatures, which responded to distinct process 
controls (Gupta et al., 2013). For example, the Thur catchment in 
Switzerland showed strong differences in seasonality between sub
catchment response (Dal Molin et al., 2020), whereas all subcatchments 
in the Moselle had a similar seasonal behavior. The neighboring Meuse 
catchment showed significant groundwater exchanges between some 

Fig. 9. Correlation between drainage distance between successive stream gauging station (A and B), and streamflow lag (panel a) and ratio between drainage 
distance and average subcatchment area (with power α = 0.1, as suggested by Leopold and Maddock (1953)) and streamflow lag (panel b). The markers are color 
coded according to the ratio between area of the downstream and upstream subcatchments, with darker color indicating higher ratio. 
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subcatchments (Bouaziz et al., 2018), whereas in our setup groundwater 
exchanges were considered negligible. Moreover, as reviewed in Section 
3.2, even the same streamflow signature can respond to distinct process 
controls in different places. For example, here we attributed baseflow 
variability to the permeability of lithology, whereas Tague and Grant 
(2004) showed that baseflow index was controlled by landscape matu
rity, rather than bedrock type, in the Oregon cascades, and responded to 
distinct controls in other areas in United States, which motivated 
alternative perceptual models in these distinct areas (Gnann et al., 
2021). However, our Moselle perceptual model was a posteriori 
reasonable. The identified process controls that affected each individual 
streamflow signature were within the range of plausible controls based 
on prior knowledge, as reviewed in Section 3.2. They therefore appeared 
justifiable from a process based perspective. 

Our perceptual model did not distinguish between soil and 

vegetation types, which can sound surprising, given that, for example, 
vegetation and soil are some key ingredients of many distributed 
models, such as SWAT (Arnold et al., 1998), LARSIM (Demuth and 
Rademacher, 2016) and PREVAH (Viviroli et al., 2009). Our analysis 
suggested that the considered streamflow data do not contain sufficient 
information to disentangle the distinct behavior of different soil or 
vegetation types. However, this conclusion may also have resulted from 
some limitations in our analysis, such as the loss of information that is 
unavoidable when compressing time series into streamflow signatures, 
or maps into landscape indices. 

5. Discussion 

Perceptual models can be the basis of several applications and can 
eventually advance our current thinking of hydrological processes in 

Fig. 10. Schematic representation of the 
perceptual model of the Moselle catchment. 
Precipitation controls the spatial variability 
of streamflow average, lithology influences 
subsurface processes and eventually the 
baseflow vs. quickflow partitioning, and 
topography and land use control hydrograph 
lag times. Vegetation and soil did not appear 
to contribute to the observed spatial vari
ability in streamflow signatures, and the 
associated processes are considered spatially 
uniform. Groundwater exchanges between 
subcatchments appeared negligible in terms 
of the long term water balance, and are 
therefore omitted.   
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different places (Wagener et al., 2020). Their development, however, 
has seldom been transparent and lacks clear guidance, particularly at the 
regional scale. This study illustrated a path to the development of a 
distributed perceptual model at the regional catchment scale based on 
an interpretation of the subcatchment responses in a nested catchment. 
This approach complements the traditional perceptual model develop
ment based on fieldwork observations, which is difficult to pursue 
beyond the headwater scale due to the disparity between measurements 
and processes scale (Beven, 2001a). Our approach can be classified as 
“top-down” in the sense that it seeks a process description “by fingering 
down into the (smaller-scale) processes from above” (Sivapalan et al., 
2003). The main advantages of this approach are that it produces a 
process description directly at the scale of interest, and that perceptual 
model decisions are supported by the available data (Sivapalan et al., 
2003). A specific challenge of this approach is represented by the “limits 
of splitting” (Beven, 1996), hence by extent to which it is possible to 
disaggregate catchment response into individual process controls. We 
showed that leveraging a nested catchment setup, it is possible to 
disentangle the individual controls on specific subcatchment response 
signatures, and inform a distributed perceptual model. Although our 
perceptual model is specific to the Moselle, the proposed perceptual 
model development approach is general, and its feasibility encourages 
its adoption to build regional scale perceptual models elsewhere. 

The nested catchment setup stands between the individual catch
ment and the large catchment sample study, favoring an intermediate 
balance between “depth” and “breadth” (Gupta et al., 2014), hence 
between process understanding and amenability to generalization. 
While recognizing the need to go beyond the “idiosyncrasies” of indi
vidual catchments (McDonnell et al., 2007), the nested catchment setup 
acknowledges the importance of region specific knowledge, which is 
often the key to interpret the unexplained variability of large sample 
studies (Gnann et al., 2021). A key advantage of the nested catchment 
setup is that it enables control on the water exchanges between sub
catchments. This control allows studying aspects such as routing pro
cesses or groundwater exchanges, which are more difficult to examine 
when considering catchments in isolation. For example, as noted by 
Beven (2001b): “the continuity equation is the most fundamental law in 
hydrology, but as a hypothesis it would appear that we cannot currently 
verify it at the catchment scale”, as there is “still no way of checking 
whether the catchment is indeed watertight”. While this statement holds 
true when studying catchments in isolation, the nested catchment setup 
facilitates such checks, as groundwater exports at some subcatchments 
would need to be compensated by groundwater import at some neigh
bouring subcatchments (Bouaziz et al., 2018). 

Our proposed approach to perceptual model development critically 
relied on the role of the hydrological expert. This role was increasingly 
challenged in modern model development approaches, such as in 
distributed modeling where “field data collection is motivated mostly by 
model parameterization” (Burt and McDonnell, 2015), and machine 
learning techniques which challenge the assumption “that the world 
needs our theories and expertise” (Nearing et al., 2021). In our 
approach, expert knowledge was essential in the key stages of the 
perceptual modeling process, and in particular in: (i) Interpreting catch
ment response time series and help defining meaningful signatures of catch
ment response. Without expert judgment one can easily miss important 
traits of catchment response. For example, the time-to-peak signatures, 
which were considered important in this study, were not considered in 
even comprehensive collection of streamflow signatures (e.g. Yadav 
et al., 2007; Addor et al., 2017). (ii) Grouping spatially resolved data into 
classes that are potentially useful for hydrology. Readily available catch
ment indicators may not contain the ones that are more hydrologically 
meaningful (Oudin et al., 2010). In our case, for example, the key to 
explain the variability of baseflow index relied on an expert-driven 
reclassification of 31 lithology classes into three permeability classes. 
An analogous endeavor to reclassify data into hydrologically relevant 
information is represented by the Hydrology Of Soil Types (HOST) 

classification developed for UK (Boorman et al., 1995), where soils are 
classified based on their influence on hydrological processes. (iii) Dis
tinguishing cause-effect relationships from mere correlations. Several land
scape and climate properties may co-vary, which makes unpicking the 
right controls on signatures’ spatial variability non trivial. Resorting to 
generic statistical or machine learning approaches can exacerbate this 
problem, as these methods are structurally complex and difficult to 
interpret. Instead, resorting to hydrological knowledge can guide to
wards meaningful process interpretations, both by offering prior 
knowledge of plausible cause and effect relationships, and by helping to 
refine such relationships through process based methods. In our study, 
the interpretation of distinct signatures relied on individual methods, 
which resorted to hydrological common knowledge. For example, as 
shown in Table A1, average streamflow correlated well not only with 
average precipitation (rs=0.92), but also with average elevation or the 
proportion of forest (rs≥0.80). The continuity equation helped to select 
precipitation as the right “cause” of streamflow average variability. 
However, without a hydrological framework, unpicking the right con
trol may have not been as obvious, particularly in a possible scenario 
where precipitation had resulted in a lower correlation than other var
iables because of poor data quality. (iv) Synthesizing results in the form of 
a perceptual model. This is a process of iteration, abstraction and syn
thesis, which seeks a plausible description of the overall system behavior 
that explains a set of individual pieces of evidence. Such synthesis 
process is the essence of the formulation of the perceptual model, which 
pieces together all the individual data interpretation analyses into a 
coherent interpretation of catchment behavior. In this process, the role 
of the hydrological expert is the key to strengthen the plausibility of a 
process-based explanation. 

It is important to recognize that a perceptual model is subject to its 
own uncertainties. In particular, there are sources of uncertainty 
affecting the calculation of climate indices, landscape indices and 
streamflow signatures (Westerberg and McMillan, 2015). For example, 
we noted that occasionally the lithology maps presented clear discon
tinuities, both at the border between countries, or at the separation 
between adjacent maps in the same country. We also noted that occa
sionally, it was not possible to assess whether streamflow time series 
were measured in summer or winter time, which could have induced a 
bias when calculating lag time signatures. Errors in the rating curve 
could add a bias to the assessment of streamflow averages. The 
streamflow filtering approach and its parameterization can affect the 
calculation of baseflow index; however these decisions are not expected 
to affect significantly the relative catchment ranking, which was the 
primary objective of such baseflow index analyses. There are also un
certainties in the interpretation of the variability of streamflow signa
tures. Such interpretations often require expert decisions, which are not 
always obvious. Because of such sources of uncertainty, the perceptual 
model should be regarded as a hypothesis of catchment behavior, 
therefore amenable to criticism and revision. 

The hydrological expertise outlined above can be contributed by 
hydrologists with various backgrounds. For example, both the experi
mentalist and the modeler can contribute to the key stages of the 
perceptual modeling process outlined above, showing that the “dialogue 
between experimentalist and modeler” (Seibert and McDonnell, 2002) 
can take place also beyond the headwater scale. The difference is that 
while at the headwater scale such dialog can follow a bottom-up 
approach, from the small scale measurements to the headwater scale 
processes, at the regional scale, because of measurements limitations, it 
needs to follow an opposite top-down approach, from the streamflow 
responses back to the processes that have generated them. As perceptual 
models are often the basis for conceptual models, the approach outlined 
here can provide a platform for a stronger engagement of the experi
mentalist in the distributed model development process. In other words, 
engagement on model structural development rather than only data 
collection for model parameterization (Burt and McDonnell, 2015). In 
FMM2022 we illustrate how the proposed perceptual model can provide 
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useful indications on what to account for and what to ignore in the 
development of a conceptual distributed model. 

6. Conclusions 

This paper has presented a top-down approach for building a 
perceptual model of streamflow variability at the regional scale, based 
on the interpretation of subcatchments responses. We used the Moselle 
catchment with 26 gauged subcatchments, and based our perceptual 
model on the interpretation of streamflow regional variability. Our 
approach critically relied on expert knowledge which can be contributed 
both by the experimentalist and the modeler, and goes beyond previous 
dialog between experimentalist and modeler—that until now has 
focused largely at hillslope- and headwater catchment scales. This 
expert knowledge was especially helpful for “reading” streamflow time 
series and synthesize them in a set of streamflow signatures, for dis
tinguishing cause-effect relationships from mere data correlations, and 
for ultimately synthesizing results in the form of a perceptual model. The 
resulting perceptual model was a-posteriori reasonable, as it could be 
justified by process understanding, but not a-priori obvious, given the 
many possible causes that can potentially affect the streamflow regional 
variability within a nested catchment. 

In summary, our Moselle perceptual model established that stream
flow regional variability could be captured by 4 streamflow signatures: 
the streamflow average, the baseflow index, the time-to-peak and the 
relative lag between hydrographs. These streamflow signatures were 
affected by distinct climatic or landscape characteristics and responded 
to different process, which could be considered “dominant” in the cur
rent context. The spatial variability of precipitation affected signifi
cantly the differences in the amount of streamflow observed at different 
subcatchments, which was attributed to processes associated to the long 
term water balance. Lithology, and in particular its relative permeability 
had a strong influence on the baseflow vs. quickflow partitioning. 
Topography and land use appeared to affect primarily the time-to-peak 
and the hydrograph relative lag, due to processes related to flow routing 
and drainage. River routing was responsible for the lag between 
hydrograph at successive downstream stations. The identification of all 
of these controls on the spatial variability of streamflow signatures 
downplayed other potential controls. In particular, regional 

groundwater flow extending beyond the subcatchment boundaries did 
not appear to be significant. Moreover, vegetation and soil did not 
appear to play a major role in explaining streamflow signatures spatial 
variability. 

Although the perceptual model is specific to the particular Moselle 
context, we think that the general approach for developing this 
perceptual model is applicable to other nested catchments. In particular, 
the proposed guidelines on how to exploit expert knowledge or even 
frame an experimentalist-modeler dialog at the regional scale, and their 
employment to use the given data to interpret dominant catchment 
processes, may serve as a basis to build perceptual models elsewhere and 
with different conditions of data availability. 

Finally, perceptual models are generally versatile in that they can 
underlie many applications. Therefore, their development deserves 
dedicated attention. In FMM2022 we illustrate how the proposed 
perceptual model can be used to inform the development of a distributed 
yet parsimonious hydrological model. This application, however, does 
not preclude the use of the perceptual model shown here for other 
purposes, nor its revision or refinement in future studies. 
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Appendix A. Definition of streamflow signatures 

Streamflow average: Q (mm/yr). The streamflow average is defined as follows: 

Q =
1

NT

∑NT

t=1
Qt (13) 

where Q indicates the streamflow at an individual subcatchment, t is the time index, NT is the number of observations, and the overbar indicates the 
average over the observation period. 

Baseflow index: QBFI (-). The baseflow index is defined as: 

QBFI =
∑NT

t=1
Q(b)

t /
∑NT

t=1
Qt (14)  

where Q(b)
t is the baseflow at a given time. A popular filter for calculating the baseflow was proposed by Lyne and Hollick (1979): 

Q(b)
t = min

(

Qt,ϑbQ(b)
t− 1 +

1 − ϑb

2
(Qt− 1 + Qt)

)

(15) 

As recommended by Nathan and McMahon (1990), the filter was applied to daily streamflow, using three passes (forward, backward and forward), 
with the filtering parameter ϑb set to 0.925. 

Time-to-peak: QTTP (h). In order to characterize the time-to-peak, we considered the time occurring from the beginning of the rising limb to the 
peak discharge, using hourly resolution streamflow data. In order to get a representative value for the entire time series, the following procedure was 
used: 
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• We extracted the rising limbs of the hydrographs.  
• We eliminated all rising limbs where the total rise is lower than a specified threshold ϑq, which was set at the difference between the 95% and 5% 

quantiles of the streamflow.  
• We calculated the time length of the remaining rising limbs T1:NR , where NR represents the number of rising limbs.  
• We used the 50% quantile of T1:NR : 

QTTP = q50(T1:NR ) (16) 

Relative lag: QLag (h). In order to estimate the lag between hydrographs at successive stations (indicated with QA and QB) we proceeded as follows:  

• We determined pair of stations by considering for each station the corresponding successive downstream station in the river network.  
• We excluded pairs for which the ratio between the area of the upstream subcatchment and the area of the downstream subcatchment is lower than 

a threshold ϑa, which was set to 0.3. This threshold avoids excessively large contributing area in between stations.  
• We calculated the Pearson cross-correlation R− NL :NL between the downstream hydrograph QB and the lagged upstream hydrograph QA, allowing for 

lags ± NL of up to ± 20 h.  
• We considered the lag iL that results in the maximum Pearson cross correlation 

QLag = iL such that max(R− NL :NL ) = RiL (17)    

• We further excluded pairs of stations for which iL was negative. 

Half streamflow date: QHSD (d). In order to confirm that the hydrographs have similar seasonal patterns, we used the half streamflow date (Court, 
1962), defined as the number of days on which half of the streamflow has passed starting from the beginning of the hydrological year (i.e. 1st of 
September, see Section 2.2), averaged across the hydrological years. 

Appendix B. Correlation of all climatic, landscape and streamflow descriptors 

Table A1 presents the Spearman correlation matrix between landscape indices, climatic indices and streamflow signatures. In terms of correlations 
between streamflow signatures and other indices, Table A1 showed that (1) Q had the highest correlation with P (rs=0.92), followed by L(Lnd)

For 

(rs=0.83), and L(Top)
ElAvg (rs=0.80), and other topographic features (e.g. slope), (2) QBFI had a high correlation with L(Lit)

H (rs=0.84). The correlation with 
other metrics was much lower; and (3) QTTP had the lowest correlation with the selected metrics (rs<0.55). 

In terms of climatic indices and their relation to landscape indices, Table A1 showed that P was positively correlated with several topography 
features, such as L(Top)

Sl95 , L(Top)
DrDen, L(Lnd)

For , and L(Top)
ElAvg (all with rs > 0.70); EPot was negatively correlated with L(Top)

ElAvg (rs=-0.82). 
Climatic indices and streamflow signatures were not internally correlated, but several landscape features co-varied. Relatively high correlation was 

found not only for indices based on the same underlying maps, but also for indices based on different maps. For example, there was a strong correlation 
between L(Lnd)

Crp and L(Top)
Wet (rs=0.87), and between L(Lnd)

For and L(Top)
Hil (rs=0.84). 

Table A1 
Spearman correlation matrix between landscape indices, climatic indices and streamflow signatures. The matrix is symmetric and the values are reported for the lower 
half only.  
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Blöschl, G., Sivapalan, M., 1995. Scale issues in hydrological modelling: a review. 
Hydrol. Process. 9 (3–4), 251–290. https://doi.org/10.1002/hyp.3360090305. 
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