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A B S T R A C T   

Regional scale distributed conceptual models are typically developed with a bottom-up approach, which is 
process-inclusive but prone to over-parameterization. Here we demonstrate a proof of concept top-down 
approach for distributed conceptual model development, intended to emphasize dominant streamflow gener-
ating processes and to fulfill the principle of model parsimony. A key challenge in applying the top-down 
approach to distributed model development is devising a model comparison experiment that is both informa-
tive and limited to a few model alternatives. Here, we show how such model comparisons can be informed by a 
perceptual model of key processes that control streamflow response variability at the regional scale. We 
demonstrate our approach for the 27,100 km2 Moselle catchment, using the perceptual model developed in Part 
1 of this two-part paper. We develop 5 distributed model structures for simulating daily streamflow at 26 sub-
catchments, and validate them on subcatchments that are not used during the calibration process. Our model 
comparisons illustrate how the spatial distribution of precipitation, lithology and topography affect the simu-
lation of key signatures of streamflow response variability in the Moselle catchment, providing a basis to justify 
model decisions. Our analyses show how a minimally parameterized distributed model, with 12 calibration 
parameters, matches signatures of streamflow average (r = 0.96), baseflow index (r = 0.86), and hydrograph lag 
time (correct at 22 out of 26 subcatchments). Our proposed top-down approach contributes to improving 
distributed model development strategies, and can be used to develop parsimonious process based regional 
models elsewhere.   

1. Introduction 

Distributed hydrological models have been used by hydrologists 
since the first flood predictions on the Durnace River in France by 
Imbeaux (1892). Although developed mostly for small catchments (e.g. 
Loague, 2010), they are increasingly used at the regional or global scale 
(e.g. Paniconi and Putti, 2015; Adams and Pagano, 2016; Fatichi et al., 
2016). While field work and process knowledge can help with the se-
lection of an existing model or even structural development of a new 
distributed model at the small catchment scale, such selection or 
development options are few at regional scales and beyond (e.g. Loritz 
et al., 2018; Ehret et al., 2020). In these large catchments, even simple 
questions and decisions are not straightforward: Should a model have a 
coarser spatial resolution to limit its complexity, or a finer one, to enable 

a more detailed process representation? Should a model consider the 
variability in the properties of soil and lithology? And if so, how can 
these data be collected and incorporated parsimoniously into the model 
structure? Is topographical data sufficient to drive the model since it 
captures much of the co-evolved relations between geology, soils and 
upslope area and local slope angle? Should the unsaturated zone pro-
cesses be described by the Richards equation, or by a simple bucket 
model approach? Should regional groundwater flow that extends 
beyond sub-catchment boundaries be considered, or it is irrelevant? 
Should a model require calibration, and if so, how can over- 
parameterization be avoided? 

These are but a few of the questions that confront the distributed 
catchment modeler today. And the answers to these questions are rather 
ad hoc. This exposes the regional scale distributed model to the many 
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criticisms that have been levied against them: the danger of over- 
parameterization when available data are not sufficient to constrain 
model parameters (e.g. Beven, 1989; Gupta et al., 1998); incorrect 
upscaling premises when the process based equations are derived at a 
scale different from that to which they are applied (e.g. Grayson et al., 
1992; Kirchner, 2006), unfulfilled spatial extrapolation assumptions 
when the dominant processes observed at one catchment are assumed to 
be dominant elsewhere (e.g. McDonnell et al., 2007; Savenije, 2009). So, 
despite > 130 years of work since Imbeaux’s first distributed catchment 
model on the Durnace, we are still wondering how to inform the many 
decisions that developing a distributed model requires. 

Distributed models are typically developed through a “bottom-up” 
approach, which is rather inclusive in terms of processes that may be 
important in principle, but may lead to the incorporation of model el-
ements that contribute little to the overall catchment response (Fatichi 
et al., 2016). In this study, we explore distributed model development 
through a “top-down” approach, hence focusing on a disaggregation of 
the system responses into their constitutive components (Sivapalan 
et al., 2003). It can be expected that the top-down approach will 
generally not lead to hyper-resolution models (Wood et al., 2011), but 
rather, to so-called semi-distributed models, which occupy an interme-
diate position in the continuum from lumped to fully distributed models 
(e.g. Boyle et al., 2001). Semi-distributed models seek an appropriate 
balance between process distribution and aggregation, in the attempt to 
maintain a connection with observable landscape properties, while still 
satisfying the principle of parsimony. These models are widely used in 
research and operation, particularly at the regional scale, as their ability 
to represent spatial patterns makes them amenable to process based 
interpretations, and their relatively limited computational requirements 
enable their use in operational setups. In terms of scientific applications, 
such models have proven useful to: (i) characterize the behavior of 
landscape sections with different macro-scale properties and behavior, 
depending for example on topography or geology (e.g. Savenije, 2010; 
Ehret et al., 2020), (ii) facilitate the application of regularization re-
lationships or parameters and processes constraints based on expert 
knowledge, which reduce over-parameterization and increase the real-
ism of spatially distributed simulations (e.g. Pokhrel et al., 2008; 
Gharari et al., 2014; Kelleher et al., 2017), (iii) enable multi-site vali-
dation, through the use of internal streamflow measurements (e.g. Dal 
Molin et al., 2020) or groundwater time series (e.g. Raneesh and 
Thampi, 2013), and (iv) enable the comparison with remotely sensed 
data, such as the spatial and temporal patterns of evaporation and total 
water storage anomalies, which can be used as additional criteria to 
verify process consistency (e.g. Mulder et al., 2015; Hulsman et al., 
2021). Such applications illustrate that semi-distributed models are a 
versatile tool to explore regional scale catchment behavior. Moreover, 
semi-distributed models are a common choice in operational setups 
(Adams and Pagano, 2016). For example, the model LARSIM is used 
operationally in Germany (Demuth and Rademacher, 2016), PREVAH in 
Switzerland (Viviroli et al., 2009), and LISFLOOD in Europe (Smith 
et al., 2016). 

The top-down approach typically relies on model comparisons and 
has been commonly applied using lumped models, providing useful in-
sights on suitable ranges of model complexity needed to model 
streamflow (e.g. Jakeman and Hornberger, 1993; Jothityangkoon et al., 
2001), or helping to interpret dominant processes in small catchments 
(e.g. McMillan et al., 2011; Fenicia et al., 2014; Yokoo et al., 2017). 
Correspondingly, it can be expected that its systematic application to 
distributed models may provide information about warranted 
complexity and provide insights on which dominant processes charac-
terize streamflow variability at the regional scale. But if lumped models 
comparisons can easily involve hundreds of variants (e.g. Prieto et al.; 
Spieler et al., 2020), distributed models are generally more time 
consuming to devise and execute, and as a result, their comparison is 
often practically limited to a handful of alternatives (e.g. Gao et al., 
2014; Gharari et al., 2014; Fenicia et al., 2016; Nijzink et al., 2016; 

Kelleher et al., 2017; Antonetti and Zappa, 2018; Dal Molin et al., 2020). 
In face of the larger space of decisions that distributed models entail (e.g. 
Fenicia et al., 2016), such model comparisons need to be strategically 
constructed in order to be informative. 

In this study, we address the problem of building a model compari-
son experiment that informs key decisions in the development of a semi- 
distributed model for streamflow simulation. In order to develop a 
minimal yet informative model comparison experiment, we rely on a 
perceptual model of regional scale processes. In a companion paper 
(Fenicia and McDonnell, 2022, hereinafter referred to as FM2022), we 
outlined the approach for building such a perceptual model, leveraging 
data typically available at the regional scale. Here, we illustrate the 
process of translating that perceptual model into conceptual model de-
cisions, and the use of controlled model comparisons to assist the ulti-
mate model selection. Stringent model evaluation is essential in 
assessing the relative merits of the models that take part in such com-
parison experiments (e.g. Fenicia and Kavetski, 2021). In order to pro-
vide a comprehensive assessment of model performance, here we 
evaluate all models assessing the goodness of fit of both time series and 
signatures, hence, both in the “time” and in the “signature” domain (e.g. 
Hrachowitz et al., 2014; Kelleher et al., 2017; Kavetski et al., 2018). 
Moreover, we assess the models’ ability to make predictions not only in 
time, but also in space, hence using subcatchments that are not used for 
calibration. Such space–time validation is a particularly stringent and 
revealing model evaluation instrument (Refsgaard and Knudsen, 1996). 

The model development chain proposed here and in FM2022 enables 
the incorporation of expert knowledge into the model development 
process, which can be contributed both by the experimentalist and by 
the modeler. The “dialog between experimentalist and modeler” is 
considered an important instrument to increase model realism (Seibert 
and McDonnell, 2002). However, such dialog has mainly taken place at 
the hillslope- or headwater catchment scale. The development of 
distributed models, particularly at the regional scale, has been largely 
devoid of any dialog between experimentalist and modeler, mostly rel-
egating the role of fieldwork to data collection for model parameteri-
zation (Burt and McDonnell, 2015). More generally, hydrological 
models have often been the result of very specific, often individual 
expertise. However, a participatory, rather than expert specific model 
development process can—as we will show—facilitate model under-
standing, criticism and revision. We call this a “bespoke model”—one 
that is tailor made for the regional watershed. 

In FM2022 we developed a perceptual model of the 27,100 km2 

Moselle catchment, which explains the spatial variability of streamflow 
signatures observed at 26 gauged subcatchments. Briefly, this percep-
tual model established that precipitation, much more than evaporation 
or groundwater exchange, controls the spatial variability of average 
streamflow, bedrock permeability influences the partitioning between 
baseflow and quickflow, and topography and land use control hydro-
graph lag times. It also provided an assessment of which other landscape 
properties did not appear to have significant effect on streamflow vari-
ability. In this paper, we illustrate how this perceptual model can be 
used for informing a distributed model comparison experiment, aimed at 
determining and justifying a bespoke semi-distributed model for the 
catchment of interest. In order to alleviate the model building burden, 
the distributed models are developed within the flexible framework 
SUPERFLEX (Fenicia et al., 2011; Dal Molin et al., 2021). 

Here we pursue the following objectives:  

1. To illustrate the process of translating the Moselle perceptual model 
into a distributed conceptual model, and in particular how the 
perceptual model informs the multiple decisions that distributed 
models require.  

2. To use model comparisons in space–time validation to test the major 
hypotheses about the process controls on the selected streamflow 
signatures posed by the perceptual model, and in particular:  
a. The effect of precipitation on average streamflow 
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b. The effect of lithology on the baseflow index  
c. The effect of topography and land use on lag times  

3. To discuss the added value of the distributed conceptual model 
compared to the underlying perceptual model of regional variability. 

The paper is organized as follows. Section 2 describes the methods, 
and in particular the transition from the perceptual model development 
to the conceptual model, the model variants for hypothesis testing, and 
the model calibration and evaluation strategies. Section 3 describes the 
model results, both in the time- and in the key signature domain. Section 
4 discusses the specific results of the model comparisons, and the general 
contribution of the proposed modeling approach. Section 5 summarizes 
the key conclusions. 

2. Methods 

2.1. From perceptual model of regional variability to distributed 
conceptual model 

The main application of the distributed model developed in this 
study is to simulate streamflow at a number of points along the river 
network of a given catchment, hence at selected internal subcatchments. 
This application can be considered the most typical for a distributed 
regional catchment model, granted that such models can simulate var-
iables other than streamflow (e.g. Samaniego et al., 2010; Hirpa et al., 
2018; Athira and Sudheer, 2021). 

In order to build a process-based distributed model with limited 
complexity for the selected application, we adhere to some common 
choices. In particular, we use semi-distributed models, hence designed 
to reproduce flow at a limited number of points along the river network 
(Boyle et al., 2001), and adopt the concept of on Hydrological Response 
Units (HRUs) (Leavesley et al., 1983) for distributing landscape 

properties. 
Even restricting our scope to semi-distributed, HRU-based models, 

model development requires several additional decisions, which can be 
summarized as follows: (1) defining the HRUs, hence the spatial dis-
cretization approach; (2) specifying the model structures associated to 
each HRU; (3) establishing the connection between such model struc-
tures; (4) defining parameter constraints to improve model parsimony; 
(5) establishing model evaluation and diagnostic metrics. 

In this study, this set of decisions is informed by a perceptual model. 
Fig. 1 indicates the correspondence between the information that a 
perceptual model might provide, and key decisions that distributed 
model building requires. FM2022 illustrated how a perceptual model of 
streamflow regional variability can be developed, in order to provide 
information on these specific points. 

The process of translating a perceptual model into a conceptual 
model is not obvious or univocally defined. Attempting a direct mapping 
between perceptual and conceptual model would still involve many ad- 
hoc decisions, with the risk that the resulting conceptual model may be 
too simple or too complex based on the available data. Therefore, rather 
than directly translating the perceptual model into a conceptual model, 
here we take the approach of exploiting the perceptual model to inform 
a set of model variants, which are aimed to test a selection of the key 
hypotheses that the perceptual model embodies. The intention of this 
comparison is to gain insights into the effect of model decisions, and 
correspondingly, into the dominant processes that characterize regional 
scale catchment behavior in the study area. 

2.2. Translation of the Moselle perceptual model into 5 distributed model 
variants 

FM2022 developed a perceptual model for the Moselle catchment, 
which interprets the spatial variability in the streamflow response of its 
26 subcatchments. In synthesis, this model established that (1) stream-
flow spatial variability can be expressed by a set of key signatures, 
characterizing streamflow average, baseflow index, and hydrograph lag 
times, (2) the spatial variability of these signatures is controlled by 
distinct climate or landscape properties, which need to be explicitly 
represented in a distributed model. In particular precipitation controls 
the spatial variability of streamflow average, lithology influences sub-
surface processes and eventually the baseflow vs. quickflow partition-
ing, and topography and land use control hydrograph lag times, and (3) 
conversely, the spatial variability of these signatures does not appear to 
be affected by other properties, which do not need to be spatially 
resolved in a model representation. In particular, vegetation and soil do 
not appear to play a major role in explaining streamflow signatures 
spatial variability. Moreover, the subcatchments appear to be “water 
tight”, in the sense that regional groundwater flow extending beyond the 

Fig. 1. Transition from a perceptual model of regional variability to a distributed conceptual model for a regional scale catchment.  

Table 1 
Summary of model variants.  

Model 
variants 

Motivation # of 
HRUs 

# of calibration 
parameters 

# of landscape 
elements 

M(HRU1, 
Lag0) 

Benchmark 
model 

1 7 26 

M(HRU1, 
Lag1) 

Include 
routing 

1 9 26 

M(HRU2, 
Lag1) 

Add HRU 2 12 52 

M(HRU2, 
Lag2) 

Improve 
routing 

2 13 52 

M(HRU3, 
Lag2) 

Add/tailor 
HRUs 

3 12 75  

F. Fenicia et al.                                                                                                                                                                                                                                  



Journal of Hydrology 605 (2022) 127286

4

subcatchment boundaries does not appear to be significant. These in-
sights are here used to build a model comparison experiment that iso-
lates the effect of these key hypotheses. 

The model comparison experiment is in line with a top-down 
approach, starting from a relatively simple benchmark model, and 
introducing model modifications aimed at a more spatially explicit 
characterization of the catchment. The set of models includes 5 model 
variants, which are listed in Table 1. These models are labeled using the 
notation M(HRUi,Lagj), where M stands for model, HRUi (i = 1,2,3) to a 
particular classification in hydrological response units, and Lagj (j =
0,1,2) to a specific representation of the flow routing. In synthesis, the 
benchmark model is represented by M(HRU1,Lag0), which uses a single 
HRU, and no flow routing elements. This model has uniform parameters 
in space, therefore it is unable to characterize landscape heterogeneity, 
but has distributed states, and therefore it is able to characterize climate 
variability, and can produce distributed simulations. This model is 
progressively evolved, leading to M(HRU1,Lag1), which introduces a 
simple routing approach, then to M(HRU2,Lag1) which adds a landscape 
discretization into 2 HRUs, then to M(HRU2,Lag2), which introduces a 
more complex routing approach, and finally to the target model M 
(HRU3,Lag2), which considers 3 HRUs. In the following, we start by 
describing the most spatially resolved model M(HRU3,Lag2) (Section 
2.2.1), and then introduce the simpler 4 model variants (Section 2.2.2). 
For ease of presentation, the model description focuses mainly on the 
concepts, relegating to the Appendix the mathematical formulations. 

The study area and data have already been described in FM2022, and 
therefore only the relevant details for the present application are 
mentioned. All models use as forcing data the time series of precipita-
tion, potential evaporation and temperature, and the streamflow is 

measured at 26 interior catchment points. Both the forcing data and the 
streamflow are considered at daily resolution. Maps of relevant catch-
ment features as well their classification are the same as in FM2022. The 
calibration–validation approach is described in Section 2.3.2. 

2.2.1. Target model 

2.2.1.1. Model structure. This section describes the target model M 
(HRU3,Lag2), and its relationship to the perceptual model developed in 
FM2022, which was briefly summarized in Section 2.2 above. The model 
schematic is shown in Fig. 2, and model equations are detailed in the 
Appendix. 

The minimum number of landscape elements that our distributed 
model requires is determined by the location of the points along the river 
network where streamflow simulations are needed. In the present case, 
this partitioning is based on the location of the 26 gauging stations 
where streamflow is observed (Fig. 2). For clarity, we define “total” 
subcatchment the total area drained by given point on the river network, 
and “incremental” subcatchment the incremental area from an upstream 
point on the river network. Hence, we divide the catchment into 26 
incremental subcatchments. 

The forcing data, hence precipitation, potential evaporation and 
temperature, are distributed per incremental subcatchment (Fig. 2). This 
decision is motivated by the perceptual model, which indicated that 
such discretization is sufficient to describe the long term water balance. 

The landscape is further discretized into HRUs based on lithology. In 
particular, 3 HRUs are considered, representing the low (HRUL), me-
dium (HRUM) and high (HRUH) bedrock permeability classes. The basis 
for this decision is that the perceptual model indicated that this land-
scape discretization is necessary to account for the variability of the 
baseflow index signature. 

Next, we assign different structures for each HRU, intended to reflect 
the associated dominant processes. We assume that lumped conceptual 
model structures considered adequate for precipitation-streamflow 
modeling would be rather inclusive for representing a given HRU. We 
therefore start with such a structure, and simplify it in order to account 
only for the processes that are perceived to be dominant in each HRU. As 
an inclusive model structure, we consider a 3 elements structure 
composed by three reservoirs: UR (unsaturated zone reservoir), inten-
ded to control the partitioning between precipitation and runoff, FR (fast 
reacting reservoir), which represent the quickflow generating processes, 
and SR (slow reacting reservoir), intended to represent the baseflow 
generating processes. An analog three elements structure was indicated 
by Jakeman and Hornberger (1993) as the “most commonly identified 
configuration” for streamflow simulation (see also Young, 2003). We 
then particularize this structure in order to describe HRU-specific 
dominant processes. In particular, the perceptual model suggests that 
as bedrock permeability goes from low to high, the subsurface processes 
progressively shift from shallow to deep, therefore triggering different 
hydrograph responses. We here assume that low bedrock permeability 
predominantly triggers a fast hydrograph response, and we therefore 
only consider the FR reservoir and we omit the SR reservoir. Medium 
bedrock permeability triggers both a fast and a slow response, and we 
therefore keep both the FR and SR reservoirs. High bedrock permeability 
predominantly triggers a slow hydrograph response, and we therefore 
keep the SR reservoir and omit the FR reservoir. 

Although snow related processes do not have a major influence on 
streamflow generation, they are nonetheless occasionally present (see 
FM2022), and therefore we account for them. For this reason, each HRU 
model also includes a snow reservoir (WR) based on the degree day 
method, which accounts for snow accumulation and melting. This spe-
cific choice is also maintained for the other model variants. 

Streamflow generated within each incremental subcatchment is ob-
tained by first adding together the outflows from the individual HRU 
models, and then by propagating the resulting flow through a lag 

Fig. 2. Conceptual diagram of the model M(HRU3,Lag2), which is mapped from 
the perceptual model in FM2022. 
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function, intended to represent the incremental subcatchment routing 
(CL) (lag functions marked in blue color in Fig. 2). Streamflow at each 
total subcatchment needs to account also for the streamflow from up-
stream subcatchments. Incoming streamflow from each upstream sub-
catchment is first offset through a lag function, intended to represent the 
river routing (RL) through the incremental subcatchment (lag functions 
marked in red color in Fig. 2), and then added to the incremental sub-
catchment streamflow. Regional groundwater flow between subcatch-
ments, as suggested by the perceptual model, is not considered, and the 
HRUs act in parallel. 

The total number of landscape elements that need to be separately 
modeled is obtained by summing the number of HRUs present in each 
incremental subcatchment, as HRUs in different subcatchments need to 
be modeled separately, given that they receive different forcings. There 
are 26 subcatchments and 3 HRUs, however not all subcatchments 
contain all HRUs, resulting in a total of 75 landscape elements (Table 1). 

2.2.1.2. Parameters constraints. The perceptual model can be further 
exploited to constrain the parameter space by providing parameters 
“regularization” relationships (e.g. Pokhrel et al., 2008). These con-
straints are described hereafter, and are also indicated in Fig. 2.  

• HRU model structure parameters. We assume that some parameters 
associated to distinct HRU model structures are related to each other. 
In particular, the perceptual model suggests a similar behavior be-
tween HRUs in terms of partitioning precipitation between evapo-
ration and runoff, which suggests that the parameters of the UR 
element can be kept common between HRU models (Fig. 2). Also the 
parameters of the snow reservoir (WR) are considered as spatially 
uniform.  

• Subcatchment routing parameters. We assume that the parameters 
associated to the incremental subcatchment routing (CL) are a 
function of selected landscape properties and two global calibration 
parameters. Based on the analysis on time-to-peak variability in the 
perceptual model, we assume that the time parameter shaping the 
lag function in each incremental subcatchment increases with geo-
metric distance, and decreases with the fraction of developed land 
use, and the 5% quantile of the slope (see Appendix).  

• River routing parameters. We assume that the parameters associated 
to the river routing from upstream total subcatchments (RL) are a 
function of landscape properties and a global calibration parameter. 
Based on the analysis on the relative lag in the perceptual model, we 
assume that the time parameter shaping the lag function associated 
to river routing increases with the drainage distance, and decreases 
with the upstream contributing area (see Appendix). 

Such parameter relationships strongly reduce the number of cali-
bration parameters of the distributed model. Specifically, the model M 
(HRU3,Lag2) has 12 calibration parameters (Table 1 and Appendix), 
which are hereafter summarized, following the notation of indicating in 
the superscript the model element to which the parameter is associated: 
the degree-day snow parameter (k(WR)), which is common to all spatial 
elements, 3 parameters characterizing the UR element (c(UR)

E , S(UR)
Max , 

β(UR)), which are also common to all spatial elements, 1 parameter 
specific for the high permeability HRUH (k(SR,HRUH)), characterizing the 
release rate of the SR element, 3 parameters for the medium perme-
ability HRUM (D(HRUM), k(FR,HRUM), k(SR,HRUM)), representing the split be-
tween FR and SR and the release rate of the 2 reservoirs, 1 parameter for 
the low permeability HRUL (k(FR,HRUL)), characterizing the release rate of 
FR, 2 parameters (a(CL)

1 , a(CL)
2 ) that scale the CL lag functions, and 1 

parameter (a(RL)) that scales the RL lag functions (see Appendix). 

2.2.2. Model variants for hypothesis testing 
The target model described above embeds several hypotheses about 

system characteristics that need to be represented in order to capture 
distributed streamflow responses. Although these hypotheses are moti-
vated by the perceptual model, the translation from perceptual to con-
ceptual model is not obvious. In order to provide a stronger basis to 
justify these hypotheses and ensure that they are supported by the data, 
4 additional model structures are introduced. These model structures 
follow a path from simple to complex, in the spirit of a top-down 
approach, starting from a benchmark model intended to represent a 
null hypothesis about process controls on streamflow responses, and 
which is progressively evolved, in order to lead to the target model 
described above. The 4 model structures are described below, and 
summarized in Table 1. 

• M(HRU1,Lag0) uses of a single HRU and no lag functions. Specif-
ically, this model has subcatchment parameters that are uniform in 
space, hence it is unable to account for the heterogeneity in land-
scape attributes. This model is still distributed, as it has distributed 
states (per incremental subcatchment), hence, it is able to account 
for the spatial heterogeneity of climate. The lag functions charac-
terizing the routing within the incremental subcatchments and from 
upstream subcatchments are also omitted. Hence, this model is un-
able to account for the associated lagging and dampening effects. As 
HRU structure, the full 3 reservoirs structures is used (previously 
used for HRUM in M(HRU3,Lag2)). This model has 7 calibration pa-
rameters, associated to the individual HRU model structure: the 
degree-day snow parameter (k(WR)), 3 parameters associated to UR 
(c(UR)

E , S(UR)
Max , β(UR)), the split parameter (D), the parameters associated 

to FR (k(FR)) and SR (k(SR)). This model has 26 landscape elements, 
which are determined solely by the number of subcatchments 
(Table 1).  

• M(HRU1,Lag1) introduces flow routing elements. Compared to the 
target model M(HRU3,Lag2), the routing is represented by the same 
lag functions, but the regularization relationships of these lag func-
tions use less parameters and less landscape attributes. In particular, 
both the subcatchment routing elements (CL) and the river routing 
elements (RL) are scaled only according to drainage distance, each of 
them using a single calibration parameter (see Appendix). The use of 
drainage distance alone can be considered one of the simplest ap-
proaches to parameterize routing effects, as used for example by 
Lerat et al. (2012). This model has 9 calibration parameters, which 
are the same as for M(HRU1,Lag0) with the addition of a parameter 
for CL (a(CL)) and a parameter for RL (a(RL)), and 26 landscape ele-
ments (Table 1).  

• M(HRU2,Lag1) introduces a partitioning of the landscape into 2 
HRUs. Compared to M(HRU3,Lag2), this model maintains the high 
permeability HRUH, and combines the other HRUs into a medium-
–low bedrock permeability HRUML. Both HRUs use the same 3 res-
ervoirs structure used in M(HRU1,Lag0) and M(HRU1,Lag1). Hence 
this model does not tailor the model structures to the specific HRUs 
like M(HRU3,Lag2). Similarly to M(HRU3,Lag2), the parameters of 
the UR reservoir are kept uniform in space, whereas the split 
parameter and the parameters associated to FR and SR are distrib-
uted. This model has 12 parameters, which are the degree-day snow 
parameter (k(WR)), 3 parameters associated to UR (c(UR)

E , S(UR)
Max , β(UR)), 

which are common to both HRUs, 3 parameters for the high 
permeability HRUH (D(HRUH), k(FR,HRUH), k(SR,HRUH)), characterizing 
the split, the FR and the SR reservoir respectively, the corresponding 
3 parameters specific for the medium–low permeability HRUML 

(D(HRUML), k(FR,HRUML), k(SR,HRUML)), a parameter for CL (a(CL)) and a 
parameter for RL (a(RL)). As each of the 26 subcatchments contain 
both HRUs, this model uses 52 landscape elements (Table 1).  

• M(HRU2,Lag2) introduces a more complex parameterization of the 
routing elements. In particular, this model uses the same regulari-
zation relationships for the lag functions as M(HRU3,Lag2), thus 
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involving more landscape attributes and one additional parameter 
associated to the RL lag functions (a(CL)

1 , a(CL)
2 ). This model has 13 

parameters, one parameter more than M(HRU2,Lag1) due to the 
additional parameters associated to the CL lag functions. Like M 
(HRU2,Lag1), this model has 52 landscape elements (Table 1). 

The last step of this chain is represented by the target model M 
(HRU3,Lag2), already described in Section 2.2.1, which differs from M 
(HRU2,Lag2) for the addition of an HRU, and for the tailoring of the HRU 
model structures according to the perceived dominant process. We note 
that M(HRU3,Lag2) has 1 parameter less than M(HRU2,Lag2) in spite of 
the higher spatial resolution, due to the tailoring of the model structures 
to the HRU dominant processes. 

Based on the premises of the perceptual model that informs the 
conceptual model decisions, the 5 model structures are associated to 
specific hypotheses about their relative merits. These hypotheses are as 
follows:  

1. M(HRU1,Lag0), in spite of its simplicity, should be able to capture the 
long term water balance.  

2. M(HRU1,Lag1) should enable the characterization of streamflow lag 
times.  

3. M(HRU2,Lag1) should enable the characterization of baseflow 
variability.  

4. M(HRU2,Lag2) should further improve the characterization of 
streamflow lag times. 

5. M(HRU3,Lag2) should further improve the characterization of base-
flow variability. 

Hence the differences between the 5 model variants have an antici-
pated effect on an individual signature, and not on others. Corre-
spondingly, the model comparison is expected to highlight influence 
factors on the selected streamflow signatures as well as their relative 
independence. 

2.3. Model evaluation 

This section describes the model evaluation approach. Section 2.3.1 
specifies the objective function used for model calibration. Section 2.3.2 
describes the calibration and space–time validation approach. Section 
2.3.3 illustrates the assessment of model performance both in the time 
and in the signature domain. 

Although a specific uncertainty analysis is not carried out, the model 
comparison provides a basis for a relative assessment of model un-
certainties, which we consider sufficient for our purpose. In terms of 
parameters uncertainty, we rely on the assumption, typical of the top 
down approach, that additional complexity is justified by the data if it 
corresponds to an improvement in model simulations (Sivapalan et al., 
2003). We also interpret significant differences between calibration and 
space–time validation performance as an indication of overfitting. In 
terms of uncertainties associated to model simulation, we rely on the 
consideration that an improvement in the selected likelihood function 
(Section 2.3.2) corresponds to tighter uncertainty bands. 

The model comparison severs multiple related purposes, and in 
particular (1) to clarify the effect of model decisions, which is obtained 
by comparing the performance of pairs of models that differ in a 
controlled way, (2) to guide the ultimate model selection, which is 
approached by assessing whether the progression of models leads to an 
improvement in the model evaluation metrics, and (3) to evaluate the 
hypotheses of the perceptual model, as the model variants correspond to 
specific hypotheses of how dominant processes affect streamflow 
regional variability. 

2.3.1. Likelihood function for model calibration 
Semi-distributed models for streamflow simulation have been 

calibrated using different strategies (e.g. Wallner et al., 2012). The 
simplest strategy is the single-site approach, which consists in calibrat-
ing the models using data at an individual gauge, similarly to what is 
commonly done with lumped models (e.g. Gao et al., 2014; Gharari 
et al., 2014; Nijzink et al., 2016). This approach has the limitation that 
an individual time series may not contain sufficient information for the 
parameter identification of a distributed model, such as to disentangle 
the behavior of different HRUs. Hence, it may lead to poor parameter 
identifiability. An alternative calibration strategy is the sequential 
approach, which consists in calibrating the model from upstream to 
downstream, in a sequential manner (e.g. Ajami et al., 2004; Feyen 
et al., 2008; Lerat et al., 2012; de Lavenne et al., 2019). This approach, 
while easy to apply, has the disadvantage that it leads to many param-
eter sets (one set for each subcatchment), hence it makes the model on 
the one hand highly parameterized, and on the other hand highly 
dependent on calibration, and therefore difficult to regionalize. Finally, 
the multi-site approach consists in calibrating the model simultaneously 
at a number of stations (e.g. Zhang et al., 2010; Fenicia et al., 2016; Dal 
Molin et al., 2020). This approach overcomes the limitations of the 
previous approaches, and is adopted in the present study. 

In order to enable model calibration, it is necessary to construct an 
objective function, which quantifies the goodness of fit of model pre-
dictions. This objective function is here derived from a Bayesian infer-
ence approach, where we assumed non-informative “flat” priors for 
model parameters, and we assumed that the residuals errors of trans-
formed streamflow are statistically independent and can be approxi-
mated by a zero-mean Gaussian distribution: 
(

Q(Obs)
i,t

)
λ −

(
Q(Sim)

i,t

)
λ = N(0, σ) (1)  

where i indicates the subcatchment and varies from 1 to the number of 
selected subcatchments NC, t indicates the time index, and varies from 1 
to the number of data points NT,i in the subcatchment i, Q(Sim) and Q(Obs)

are simulated and observed streamflow respectively, N(0, σ) is the 
Gaussian distribution with zero mean and standard deviation σ, and the 
power λ is fixed at 0.5, implying a square root transformation, as rec-
ommended by McInerney et al. (2017). 

Maximising the posterior parameter distributions under the 
assumption of Equation corresponds to maximising the Nash Sutcliffe 
efficiency of the square root of the streamflow: 

FNS = 1 −

∑NC
i=1

∑NT,i
t=1

( ̅̅̅̅
Q

√ (Sim)

i,t −
̅̅̅̅
Q

√ (Obs)
i,t

)
2

∑NC
i=1

∑NT,i
t=1

( ̅̅̅̅
Q

√ (Obs)
i,t − ave

( ̅̅̅̅
Q

√ (Obs)
1:NC ,1:NT

))
2

(2)  

where ave indicates the average, which is extended to the streamflow of 
all subcatchments. 

2.3.2. Calibration and space–time validation strategy 
The model evaluation strategy is motivated by testing the quality of 

model simulations in space–time validation, meaning using a time 
period and a set of subcatchments that the model does not see during 
calibration (e.g. Fenicia et al., 2016; Dal Molin et al., 2020). Using the 
words of Klemeš (1986), this validation may be called a proxy-basins 
split-sample test. For this purpose, the available data is organized as 
follows:  

• The time period is partitioned into two 13-year periods: period 1, 
going from 1.09.1989 to 31.08.2002, and period 2 going from 
1.09.2002 to 31.08.2015. 

• The subcatchments are partitioned into two groups of 13 subcatch-
ments each: group A and group B. The partition is made by sorting 
subcatchments by total area, and placing every second subcatchment 
in each group. 

The organization of the data in two periods and two groups of 
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subcatchments is presented in Fig. 3, which also shows the data avail-
ability for each subcatchment (represented by the corresponding gauge 
name). Missing data are treated by considering in the objective function 
(Eq. (2)) only time indices where data is available. Fig. 1 and Table 1 in 
FM2022 shows the spatial location of the subcatchments and list their 
areal extension. 

The model evaluation strategy proceeds as follows:  

1. We calibrate the models on one group of subcatchments over a given 
time period, and validate it on the other group of subcatchments over 
the other time period, hence we perform space–time validation. With 
reference to Fig. 3, once a quadrant is chosen for calibration, moving 
horizontally on another quadrant means performing time validation, 
moving vertically means performing space validation, and moving 
diagonally means performing space–time validation. For example, if 
a model is calibrated on Period 1 – Group A, then Period 2 – Group A 
represents time validation, Period 1 – Group B represents space 
validation, and Period 2 – Group B represents space–time validation. 

2. This process is repeated for all four combinations of calibration pe-
riods and subcatchment groups.  

3. The streamflow time series from the four space–time validation 
scenarios are then concatenated, thus forming a single set of “pre-
dicted” streamflow time series spanning the entire observation 
period at each subcatchment. An analogous set of “concatenated” 
time series of “calibrated” streamflow is also constructed. 

The results focus on comparing model performance in calibration 
(the least challenging scenario) and space–time validation (the most 
challenging scenario). As the two scenarios use the same underlying 
data, when moving from calibration to space–time validation, at least in 
terms of the calibration objective function, model performance can only 
degrade. The degree of this degradation may give an indication on 
whether any of the models is prone to overfitting the data. 

2.3.3. Performance metrics of streamflow simulations 
Model performance is analyzed both in the time domain and in the 

signature domain. For model evaluation in the time domain, we use the 
FNS metric already defined in Equation (2), as it corresponds to the 
objective function used for model calibration. 

For model evaluation in the signature domain, the following three 
streamflow signatures evaluation metrics are used, which are based on 
the analysis of streamflow spatial variability performed in FM2022: 

Streamflow average correlation: The streamflow average at a 

given subcatchment is defined by: 

Qk =
1

NT,k

∑NT,k

t=1
Qk,t (3)  

where Q is the streamflow, k = 1...NC is the subcatchment index, with 
NC representing the number of subcatchments, t is the time index, NT,k is 
the number of observations at the subcatchment k, and the overbar in-
dicates the average over the observation period. 

To assess model ability to simulate this signature, we consider the 
Pearson correlation r between observed and simulated streamflow 
average at the 26 subcatchments: 

FQavg = r
(
Q(Obs)

,Q(Sim)) (4) 

We choose the correlation to quantify the alignment between the 
observed and predictive values, rather than the agreement of the abso-
lute values, and we assess visually the agreement along the diagonal. We 
opt for using Pearson rather than Spearman correlation (as used in 
FM2022), as the agreement between observed and simulated quantities 
should ideally be linear. 

Baseflow index correlation: The baseflow index is defined as: 

QBFI,k =
∑NT,k

t=1
Q(b)

k,t /
∑NT,k

t=1
Qk,t (5)  

where Q(b)
k,t is calculated with the filter proposed by Lyne and Hollick 

(1979), using the same settings as in FM2022. 
To assess model ability to simulate this signature, we consider the 

correlation r between observed and simulated baseflow index at the 26 
subcatchments: 

FQbfi = r
(

Q(Obs)
BFI ,Q(Sim)

BFI

)
(6) 

Also here, we chose the correlation to quantify the alignment be-
tween the observed and predictive values, rather than the agreement of 
the absolute values. 

Hydrograph relative lag: In order to estimate the lag between 
observed and simulated hydrographs, we proceeded as follows:  

• We calculate the Pearson cross-correlations Rk,− NL :NL between the 
observed and simulated hydrographs at each subcatchment k, shift-
ing the observed hydrograph for lags ± NL of up to ± 20 d with 
respect to the simulated hydrograph. 

Fig. 3. Calibration-validation strategy. Each model is calibrated in each period and each group of subcatchments (i.e. in each of the 4 quadrants) and validated in the 
other period and group of subcatchments (i.e. in the opposite quadrant along the diagonal). Each calibration period is preceded by 1 year warm-up (delimitated by 
the green dashed line). The horizontal lines indicate data availability in each of the subcatchments (blue and red indicate the two groups), and gaps in the lines 
indicate missing values. 
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• We consider the lag iL,k that results in the maximum Pearson cross 
correlation: 

QLag,k = iL,k such that max
(
Rk,− NL :NL

)
= Rk,iL (7) 

The relative lag QLag,k should be zero if the lag is correctly simulated 
by the model (a positive relative lag would mean that the simulated 
hydrograph overestimates the lag). 

We then simply sum the absolute values of the hydrograph relative 
lag for all the subcatchments: 

FQlag =
∑NC

k=1

⃒
⃒QLag,k

⃒
⃒ (8)  

which is an integer equal or larger than zero, with lower values indi-
cating better performance (i.e. a value of zero indicates that the lag is 

correctly simulated at all subcatchments). 

3. Results 

3.1. Model performance in the time domain 

Fig. 4 shows box plots representing the variability of FNS in the 
subcatchments under the calibration and space–time validation 
scenarios. 

The following results can be observed:  

1. In calibration, the averages for the 26 subcatchments of the FNS for 
the models M(HRU1,Lag0), M(HRU1,Lag1), M(HRU2,Lag1), M(HRU2, 
Lag2) and M(HRU3,Lag2) were 0.80, 0.83, 0.85, 0.85, 0.86 respec-
tively. Hence, there was a general increase in performance when 

Fig. 4. Nash-Sutcliffe efficiency (FNS) in calibration (panel a) and space–time validation (panel b). The x-axis indicates the 5 model variants being compared. FNS is 
calculated for each individual subcatchment, and reported as box plots. 

Fig. 5. Nash Sutcliffe efficiency (NSE) of streamflow predictions (in square root transformed space) for each individual subcatchment (sorted from smallest to 
largest) in space–time validation for the 5 model variants. The improvement in NSE is larger for the worse performing subcatchments. 
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Fig. 6. Observed and modeled streamflow average (upper row) and baseflow index signatures (lower row) for M(HRU1,Lag0), in calibration (left column), and 
space–time validation (right column). The model captures the streamflow average signature, but does not capture the baseflow index signature. 

Fig. 7. Observed and modeled streamflow average (upper row) and baseflow index signatures (lower row) fir M(HRU2,Lag1), in calibration (left column), and 
space–time validation (right column). Compared to the single HRU models, there is a noticeable improvement in simulating the baseflow index. 
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increasing the number of HRUs of the more complex models. The 
corresponding standard deviations of the FNS values were 6.4⋅10-2, 
6.5⋅10-2, 5.3⋅10-2, 5.0⋅10-2 and 4.5⋅10-2, showing a decreasing ten-
dency, which indicated a more stable model performance across 
subcatchments for the more complex models.  

2. In space–time validation, the ranking was generally preserved, 
however with lower average and larger spread for all models. In 
particular, the FNS average values were 0.76, 0.76, 0.79, 0.80, 0.81 
and 0.82, while the corresponding standard deviations were 8.1⋅10-2, 
8.1⋅10-2, 6.2⋅10-2, 6.8⋅10-2 and 5.5⋅10-2.  

3. The increments in performance between the models in terms of FNS 
appeared minor. For example, the difference between the average 
FNS values of the two HRU model M(HRU2,Lag2) and the 3 HRUs 
model M(HRU3,Lag2) was just 0.01.  

4. The best performing model, hence M(HRU3,Lag2), in space–time 
validation, had FNS values comprised between 0.64 (at Luneville, one 
of the smaller subcatchments) and 0.91 (at Cochem, the catchment 
outlet). 

Hence, overall, the analysis in terms of FNS indicated that the 
modeling progression led to an improvement of performance, as hy-
pothesized in Section 2.2.2. However, based on this analysis alone, the 
differences in model performance did not appear very significant. 

Fig. 5 shows the FNS values for each individual subcatchment and 
model variant in space–time validation, thereby complementing the 
earlier assessment based on aggregated results. Differences in FNS values 
between models were clearly catchment dependent. As a general ten-
dency, subcatchments characterized by poorer performances when 
using the simpler model variants (e.g. Boncourt, Luneville, Reinheim 
and Fremersdorf) were the ones that experienced most of the improve-
ment, while subcatchments that already presented a relatively high 
performance were relatively stable. Hence, the model improvements 
generally had an effect on fixing the outliers, rather than producing a 

uniform improvement for all subcatchments. This effect explains why on 
average, the improvement in FNS values was rather minor. In order to 
better assess model differences and understand the associated causes, it 
is important to analyze the streamflow signatures, which provide the 
basis of a diagnostic approach to model evaluation, as shown in the 
subsequent section. 

3.2. Model performance in the signature domain 

In terms of streamflow signatures, we start by reporting the models’ 

ability to simulate Q(Obs) and Q(Obs)
BFI . We explicitly report the simulations 

of models M(HRU1,Lag0), M(HRU2,Lag1) and M(HRU3,Lag2) in Fig. 6, 
Fig. 7, and Fig. 8 respectively, hence the initial model of the chain, and the 
subsequent models that showed the highest improvement in at least one 
of the signatures. This comparison is summarized in the following results:  

1. All 5 models demonstrated a similar and very good ability to 

reproduce Q(Obs), with FQavg > 0.95 both in calibration and in 
space–time validation, and a good agreement along the diagonal 
line. This result implies that the differences in the structures of the 5 
models did not have an effect on this signature, and that M(HRU1, 
Lag0), the simplest model, based on a single HRU, already contained 
the ability to simulate this signature.  

2. The models differed significantly in their ability to reproduce Q(Obs)
BFI . 

In particular, M(HRU1,Lag0) and M(HRU1,Lag1) were unable to 
simulate differences between subcatchments (FQbfi < 0 in both 
cases), M(HRU2,Lag1) and M(HRU2,Lag2) provided a better match 
(FQbfi = 0.52 and 0.48 respectively in space–time validation), and M 
(HRU3,Lag2) significantly improved the fit (FQbfi = 0.86 in space-
–time validation, and a good agreement along the diagonal).  

3. The performance of the models was lower in space–time validation 
than in calibration, however it decreased only slightly. In particular, 

Fig. 8. Observed and modeled streamflow average (upper row) and baseflow index signatures (lower row) for M(HRU3,Lag2), in calibration (left column), and 
space–time validation (right column). Compared to the 2-HRUs models, there is a further significant improvement in simulating the baseflow index. 
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the performance of the models in terms of Q(Obs) remained more or 
less unchanged, whereas the models’ ability to reproduce Q(Obs)

BFI 
experienced a minor deterioration. 

Fig. 9 illustrates the ability of the 5 models to correctly simulate 
hydrographs lags in space–time validation. Each column of a given panel 
shows the correlation between observed and simulated streamflow for 
different lags (tLag) of the simulated streamflow. The red cross indicates 
the lag for which the correlation was maximized. The cross should be at 
tLag = 0 if the lag is correctly simulated. If the red cross is at tLag = -1, it 
means that the simulated streamflow dynamics are anticipated of one 
time step (in this case one day) compared to the observed ones. 

It can be observed that M(HRU1,Lag0), which has no lag functions, 
failed to correctly simulate the lag at 19 out of 26 subcatchments, where 
the lag was always anticipated of one day compared to the observations, 
leading to FQlag = 19 in space–time validation. M(HRU1,Lag1) and M 
(HRU2,Lag1), which use the simple parameterization of the lag function, 
led to a sensible improvement, failing to correctly simulate the lag at 6 of 
the subcatchments, with a lag of ± 1, and leading to FQlag = 6. M(HRU2, 
Lag2) and M(HRU3,Lag2), which adopt the more complex parameteri-
zation of the lag functions, further improved the representation of the 
lags, with FQlag = 4. It can be noted that models that share the same 
parameterization of the lag function were consistent both in the number 
of failures, which was exactly the same, and in the subcatchments where 

this failure appear, which was similar. The calibration performance was 
consistent with the performance in space–time validation with FQlag 

values of 16, 6, 6, 1 and 2, respectively for the 5 models. 
Overall, the signatures analysis shows that model modifications had 

a targeted effect on an individual signature without affecting signifi-
cantly the others. In particular, the distribution of the forcings data had 
an effect on capturing the long term streamflow average, the distribution 
of the landscape in HRUs had an effect on simulating the baseflow index, 
and the routing model and successive improvements predominantly 
affected the hydrograph lags. 

By comparing the results in the signature domain from those in the 
time domain, it is apparent that the streamflow signatures provided a 
complementary perspective on the relative merits of the three models. In 
particular, they helped identify similarities and differences in model 
simulations, which were not immediately apparent with a metric of time 
series agreement such as the Nash Sutcliffe efficiency. 

4. Discussion 

4.1. Agreement of conceptual model results with perceptual model 
hypotheses 

The distributed perceptual model developed in FM2022 has been 
employed to set-up a conceptual model comparison experiment, with 

Fig. 9. Comparison of the model variants in their 
ability to simulate hydrograph lags in space–time 
validation. M(HRU1,Lag0) fails to correctly 
simulate the lag in 19 out of 26 subcatchments, 
as no routing elements are implemented. M 
(HRU1,Lag1) and M(HRU2,Lag1), which incorpo-
rate routing with a simple parameterization, 
significantly improve the performance, failing to 
reproduce the lag at 6 subcatchments. The more 
complex routing parameterization used in M 
(HRU2,Lag2) and M(HRU3,Lag2) further improves 
performance leading to 4 subcatchments where 
the lag is not correctly matched.   
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the purpose of clarifying the effect of model decisions, guiding model 
selection, and testing key hypotheses of how dominant processes affect 
streamflow regional variability. 

Five model variants were compared based on the expectation that 
they would behave differently in their ability to simulate a selection of 
streamflow signatures, namely the streamflow average, the baseflow 
index, and the hydrograph lag. Our results indicated that (1) the 
benchmark model M(HRU1,Lag0), that accounted for the spatial vari-
ability of the forcings, but did not account for the spatial heterogeneity 
of the landscape, captured the streamflow average signatures as good as 
more complex models (r = 0.95 in space–time validation). This result 
indicates that climate rather than landscape affected streamflow 
average. (2) M(HRU1,Lag1) introduced routing elements, simply 
parameterized based on drainage distance. This modification greatly 
improved the simulation of hydrograph lags (leading from 19 to 6 
subcatchments where the lag was wrongly simulated). This result sug-
gests that such drainage distance acts as a primary control on hydro-
graph lags. (3) M(HRU2,Lag1), introduced a partitioning of the 
landscape into 2 HRUs, based on relative bedrock permeability, inferred 
from lithology. Such a partitioning enabled a characterization of the 
baseflow index signature (from r < 0 to r = 0.52 in space–time valida-
tion). This improvement suggests that lithology acts as a primary control 
on baseflow. (4) M(HRU2,Lag2) introduced a more complex parame-
terization of the routing elements, using additional topography and land 
use indicators, which further improved the characterization of lag times 
lags (reducing from 6 to 4 subcatchments where the lag was wrongly 
simulated). This outcome indicates the role of additional topographic 
and land use controls on lag times. (5) M(HRU3,Lag2) further discretized 
the landscape into 3 HRUs based on a finer resolution of relative bedrock 
permeability, and tailored the model structure to the perceived domi-
nant processes in each HRU. This model improved the characterization 
of the baseflow index (from r = 0.48 to r = 0.86 in space–time valida-
tion), which confirms the control of lithology on baseflow. 

In summary, the model comparison experiment confirms the key 
hypotheses of the perceptual model, indicating that (1) incorporating 
into the model structure information about spatial variability of pre-
cipitation, bedrock permeability, topography and land use was essential 
to capture the signatures of streamflow average baseflow index and 
hydrograph lag. Model structures that omitted this information had 
lower ability to reproduce these signatures; (2) the selected streamflow 
signatures responded to individual processes controls, as the model 
modifications that affected the processes associated to given signature, 
affected minimally the other signatures (notably the simulation of the 
streamflow average was essentially the same for all model variants). 

It is interesting to note that the difference in simulation abilities of 
the 5 models was much more evident in the signatures domain than in 
the time domain. In terms of average Nash-Sutcliffe efficiency (FNS), the 
ranking of performance in the time domain was consistent with the one 
in the signature domain, meaning that higher FNS corresponded to better 
match of the streamflow signatures. However, the average FNS of the 5 
models varied within a very narrow range: 0.80 to 0.86 in calibration, 
and 0.76 to 0.82 in space–time validation, whereas the models’ ability to 
match signatures went from very poor (near zero baseflow index cor-
relations or lag wrong at the vast majority of the catchments) to rela-
tively good (see above). Small differences in average FNS are explained 
when considering that differences in FNS values between models were 
clearly subcatchment dependent. Hence, model improvements generally 
had an effect on improving the performance of bad performing sub-
catchments, rather than producing a uniform improvement for all sub-
catchments. Improving the FNS on a few subcatchments had a low impact 
on the overall average. Hence, one of the lessons learned from this model 
comparison was the importance of considering multiple model evalua-
tion criteria and in particular hydrological signatures. Using signatures 
for model diagnostics has previously been encouraged in the hydrolog-
ical literature (e.g. Sivapalan, 2006; Hrachowitz et al., 2014), but has 
rarely been taken up operationally. Our findings are a clear example of 

how a model evaluation metric such as the Nash Sutcliffe efficiency 
would be a poor indicator to detect differences in the models used, 
which are instead clear and significant in the signatures domain. 

Although the model comparison experiment supported the hypoth-
eses noted by the perceptual model, the “magnitude” of model im-
provements may not always appear consistent with the results of the 
analyses that underpinned the development of the perceptual model. In 
particular, in going from 2 to 3 HRUs the model improvement was 
relatively large (from Pearson r = 0.48 of M(HRU2,Lag2) to r = 0.86 of M 
(HRU3,Lag2) in space–time validation) compared to the improvement of 
using 2 to 3 HRUs when fitting the baseflow index in FM2022 (from 
Pearson r = 0.87 to r = 0.90). We explain this apparent inconsistency by 
noting that the models were calibrated to streamflow and not to the 
streamflow signatures, which were used for independent evaluation. It 
might therefore be that the simpler model was too simple in some other 
respects, which created a tradeoff in its ability to accommodate different 
objectives. The more complex model might reduce this tradeoff, and 
enable the model components to better comply with their intended 
function. 

In terms of modeling hydrograph lags, we saw a big improvement 
when introducing such lag elements to a model that did not consider 
them (when going from M(HRU1,Lag0) to M(HRU1,Lag1), the sub-
catchments where the lag was wrongly simulated dropped from 19 to 6 
in space–time validation). But we saw a small improvement when 
introducing a more complex lag parameterization (the drop was from 6 
to 4). The models use two instruments to simulate such lags, being the 
routing that occurs within the incremental subcatchments, which is 
associated to the analysis on time-to-peak in FM2022, and the routing 
that occurs along the river stretches from upstream subcatchments, 
which is associated to the analysis on relative lags in FM2022. The 
analysis on relative lags of FM2022 did not show a large improvement in 
going from a simpler (used in M(HRUi,Lag1)) to a more complex 
formulation (used in M(HRUi,Lag2)), but the time-to-peak analysis of 
FM2022 showed a large improvement when going from a simpler to a 
more complex formulation (as shown in Table 4 in FM2022, the 
Spearman correlation went from 0.56 for the simpler formulation using 
only drainage distance, to 0.78 for the more complex formulation using 
3 landscape attributes), which might have raised the expectation that 
the model improvement associated to a more complex parameterization 
of the lag functions was larger. This apparent disparity of results is 
explained considering that first, the current model application used 
daily data, whereas the analysis of the lags in FM2022 used hourly data, 
and for many subcatchments, both the time-to-peak and the relative lags 
assessed in FM2022 were sub-daily (see Figs. 5 and 9 in FM2022). 
Second, here the assessment of hydrograph lags was based on the overall 
timing agreement of observed and simulated time series, which com-
bines all lags introduced by all model elements, hence all model reser-
voirs and lag functions collectively. 

One might ask at this stage what the value of the conceptual model 
comparison experiment was beyond simply a confirmation of perceptual 
model hypothesis. First, a conceptual model can be predictive (e.g. it can 
predict streamflow time series in other time periods or different catch-
ments), whereas a perceptual model is generally qualitative. Second, the 
conceptual model developed in this paper is an integrative model that 
has the ability to explain the combined relevant aspects of streamflow 
spatial variability. The individual regressions that were the basis of the 
perceptual models are a more “fragmented” representation of catchment 
behavior: each of them designed to mimic an individual aspect of 
streamflow spatial variability. 

The model M(HRU3,Lag2) is the best performing model, and there-
fore the model of choice. However, it should not be interpreted as the 
end of the modeling process, but rather as a basis for further explora-
tions. There are many possible refinements that can be tested and 
potentially incorporated, depending on the intended model objectives. 
These could include a more complex river routing module, or a more 
spatially refined representation of catchment properties. Our work has 
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followed the “top-down” philosophy of keeping the model as simple as 
possible for the task at hand. Pursuing the same philosophy, further 
model refinements should be tested based on what they add in terms of 
predictive abilities as well as requirements for the intended model use. 
In this spirit, a more complex processes representation should be war-
ranted by an improved explanatory power, otherwise it would be un-
justified by the data (e.g. Grayson et al., 1992). 

4.2. Sources of uncertainty 

Uncertainties in hydrological modeling arise from several sources, 
namely structure, parameters and observations, and propagate as un-
certainties in model simulations (e.g. Liu and Gupta, 2007). There are 
several formal approaches that can be used to quantify such un-
certainties (Beven and Binley, 1992; Kavetski et al., 2006; Montanari 
and Di Baldassarre, 2013), including recent approaches that enable the 
identification of individual model mechanisms in a Bayesian framework 
(Prieto et al., 2021). Such formal assessment was not conducted in this 
study as considered beyond scope. However, an argumentative assess-
ment of these uncertainties can be provided on the basis of our analyses. 
In terms of model parameters, a general argument of the top-down 
approach is that additional complexity is justified by an improvement 
in model simulations (Sivapalan et al., 2003). As the progression 
through the 5 models resulted in an improvement in model simulations, 
the model modifications all appear to be supported by the available data 
and therefore are not expected to result into over-parameterization. 
Moreover, the performance of all models, both in the time and in the 
signature domain, degraded only little in space–time validation, which 
is also an indication that all models did not appear to over-fit the data. In 
terms of uncertainties in model simulations, given the correspondence 
between the objective function and a likelihood function associated to a 
streamflow error model (Section 2.3.1), an improvement in such 
objective function would also result in smaller uncertainties. Hence, the 
progression through the 5 models would gradually reduce the hydro-
graph uncertainty bands. In terms of model structure, the proposed 
controlled model comparison approach exposes model decisions to 
evaluation. Results confirm and reinforce the hypotheses of the 
perceptual model, which, as mentioned in FM2022, is also subjected to 
uncertainty. 

Associated to the issue of uncertainty is issue of model trans-
ferability, hence, the extent to which the model can provide predictions 
outside calibration. An ideal objective of hydrological model building is 
to achieve model transferability in space, time and across scales. Our 
model development and evaluation approach suggests that the target 
model has such ability, albeit within a prescribed range. In particular, 
our space–time validation approach indicates that the model is able to 
extrapolate to different subcatchments within the same region, and 
different time periods than used in calibration, with minimal loss in 
performance. Moreover, the model bridges scales that vary within about 
two orders of magnitude in the 100 to the 10.000 km2 range, hence from 
the smallest subcatchments to the total catchment area (see Table 1 in 
FM2022). However, extrapolations beyond the prescribed range, such as 
outside the study area or beyond the range of scales here considered, 
such as in headwater catchments, would not be granted and would 
require further analyses. Such analyses may be for example represented 
by repeating our model development approach to some of the smaller 
subcatchments with corresponding nested gauging stations, or to other 
catchments in a different location. 

4.3. What do we learn moving to progressively larger scales? 

Increasing scales reveal different influence factors on catchment 
response and associated dominant processes. This effect could be 
attributed the fact that, with increasing size, smaller scale variability 
tends to average out, and larger scale variability becomes progressively 
more visible and starts to play a role. For example, lithology or 

climatology is more uniform at the headwater scale, and becomes more 
heterogeneous at the regional scale, which makes their effects progres-
sively more noticeable. Other properties may follow an opposite trend. 
For example, the fractions of different land uses may be variable at small 
scales, and tend to stabilize when upscaling to the regional scale. The 
effect of lithology on streamflow generation, in particular, is difficult to 
analyze when studying an individual catchment, where lithology is 
uniform. In a previous study on three headwater catchments in 
Luxembourg (Fenicia et al., 2014), the role of lithology on streamflow 
response became more visible though catchment comparisons, although 
difficult to isolate, as these catchments differed in many other aspects, 
including land use, area or topography. It became more obvious and 
discernible when considering a nested catchment setup, as in Fenicia 
et al. (2016) and in the current study. It is interesting to note that 
although the two latter applications differed in scale by an order of 
magnitude, the signature of lithology continued to be discernible and 
highly influential on streamflow generation. The current application 
also revealed the effects of variable climatology and the routing of the 
river network, which were considered progressively less important at 
smaller scales. In a different area (the Thur catchment in Switzerland) 
we confirmed the importance of lithology in affecting streamflow 
regional variability, but we also observed strong differences in stream-
flow seasonality (Dal Molin et al., 2020), which we did not observe in 
the current application. Other studies have shown the importance of 
regional groundwater flow, which here was considered negligible (e.g. 
Muñoz et al., 2016; Bouaziz et al., 2018). Hence catchment responses 
vary depending places and scales, which may affect individual modeling 
choices. Other studies on distributed model comparisons have stressed 
the importance of topography, and its effects on quickflow vs. baseflow 
partitioning, evaporation and lag times (e.g. Gao et al., 2014; Gharari 
et al., 2014; Nijzink et al., 2016). Our results confirm that topography 
affected lag times, which was incorporated in the parameterization of 
the lag functions. However, we could not confirm an effect on evapo-
ration or baseflow. A direct comparison of our work with these studies is 
complicated by the fact that these studies have not considered lithology 
as a possible control on streamflow variability. 

An important question when attempting to map process space to 
model space is at which scale such connection should take place. Many 
distributed models are based on the premise that “physical properties of 
the basic processes can only be retained at small spatial scales” (Martina 
et al., 2011). For example, MHM uses a parameter regionalization 
approach using data at the smallest possible scale (Samaniego et al., 
2010). On the other hand, lumped model regionalization (e.g. Oudin 
et al., 2008) and catchment classification approaches (Addor et al., 
2018) typically seek that connection using aggregated measures of 
landscape properties, hence directly at the scale of a catchment. Our 
results support the concept of regions of hydrological similarity or 
HRUs, and the idea that a relatively small number of HRUs enables a 
sufficient connection between processes and their model representation 
within a given region. Such premise is the basis of many semi-distributed 
models (e.g. Savenije, 2010; Dal Molin et al., 2020). Hence, it appears 
that the connection from process space to model space is in principle 
possible at multiple scales, depending on the scale of the processes that 
one is interested in representing, and provided that appropriate in-
dicators of landscape properties are used, that are representative of the 
processes at that scale. As shown in FM2022 and elsewhere (e.g. Oudin 
et al., 2010; Gnann et al., 2021) devising such meaningful landscape 
indicators is nontrivial and requires careful analysis. 

4.4. Calibration parameters in distributed regional scale models: Key 
takeaways? 

In terms of the appropriate number of model calibration parameters 
for regional scale streamflow simulation, our results suggest that this 
number does not appear to scale up with the catchment size or with the 
number of subcatchments. The best performing model M(HRU3,Lag2) 
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had 12 calibration parameters. Earlier work in the Attert catchment, 
showed that a model with 11 calibration parameters was sufficient to 
reproduce relevant signatures of streamflow variability at 10 sub-
catchments (Fenicia et al., 2016). This number of parameters was higher 
than for a typical lumped streamflow simulation model (e.g. Jakeman 
and Hornberger (1993) concluded that the “permissible model 
complexity” contains around half a dozen parameters), but not orders of 
magnitude higher (e.g. Fenicia et al. (2014) found that simulating a 
complex double-peaked hydrograph response in a headwater catch-
ments in Luxembourg required 11 parameters). 

Such relatively limited complexity for a semi-distributed model may 
appear counterintuitive at first. Our explanation of this result is twofold. 
First, a semi-distributed model can be considered as many lumped 
models operating in parallel, but not all of the parameters that charac-
terize these lumped models need to be spatially variable. Many of such 
parameters can share the same values, or their spatial variability can be 
prescribed by some parameter regularization relationship that depends 
on a few “global” parameters. In M(HRU3,Lag2), only the groundwater 
parameters were kept independent, but other parameters where either 
kept uniform (e.g. the snow or soil related parameters) or linked through 
some regularization relationship (e.g. the routing parameters). Second, 
HRU model structures can be tailored to the dominant processes of in-
dividual HRUs, resulting in being simpler than a typical lumped model. 
For example, 2 of the 3 HRUs of M(HRU3,Lag2) were characterized just 
by two buckets, as intended to model discharge with specific dynamics 
(fast or slow). 

The number of calibration parameters that results from our model 
application appears low compared to other studies. For example, 
Pokhrel et al. (2008) needed to estimate 858 parameters of the grid 
based SACSMA model, which were reduced to 33 overall parameters 
using parameter regionalization relationships. Foglia et al. (2009) had 
35 calibration parameters in their distributed version of TOPKAPI. 
Samaniego et al. (2010) related model parameters to observable char-
acteristics and obtained 62 calibration parameters for the distributed 
MHM model. The disparity between our work and these other studies 
may be explained by the fact that we tailored our bespoke model to a 
specific catchment and scale, which enabled several simplifications. A 
general purpose model, as the ones in the studies mentioned above, need 
to consider whatever process may be important in principle, even if such 
processes may not be dominant in a given application. 

Understanding what to account for and what to ignore when devel-
oping a distributed model is an important question. This paper and 
FM2022 proposed a new way to approach this question. Instead of 
starting by feeding a distributed model with data, our expert driven 
approach “looks at data first” and only then starts the modeling process. 
Such informed analysis of the data helps resolve many hydrological 
modeling questions before the model structure is determined—helping 
bring experimentalist insights into the initiation of the conceptual model 
construction process and execution of the model calibration approach. 
Although the ultimate model is specific to a given region and therefore 
not transferable to other places where other processes may dominate, 
the model development approach is indeed exportable to other areas. 
More generally, we suggest a shift from the quest for a general model, 
which may be an unattainable ideal given differences in model appli-
cations, to the quest for general model development approaches, which 
can systematically identify a suitable model for a given application. Our 
work shows that this can be possible at the regional scale, and that 
expert knowledge, supported by an experimentalist modeler dialog, can 
facilitate this process. 

5. Conclusions 

This study illustrated the development of a semi-distributed 

conceptual model for streamflow simulation at 26 subcatchments within 
the Moselle catchment. This bespoke model was informed by a percep-
tual model for the same catchment developed in FM2022. The percep-
tual model used 5 model variants of increasing complexity, designed to 
test specific model hypotheses. We evaluated the 5 models in a space-
–time validation, hence using a set of subcatchments and a time period 
not used for calibration. 

From a methodological perspective, this study showed how the many 
decisions required for the development of a distributed model can be 
informed by a perceptual model. In particular, we showed how the 
understanding of landscape controls on streamflow spatial variability 
and how these vary spatially, can be translated into model decisions via 
HRUs, model structural components and model parameter constraints. 

Our comparisons of the 5 model variants clarified the effect of in-
dividual model decisions on streamflow simulations, and informed the 
ultimate model selection. In particular, this model comparison was able 
to (i) identify a distributed model (in particular, M(HRU3,Lag2)) that 
matched key streamflow signatures in space–time validation, namely 
streamflow average (r = 0.96), baseflow index (r = 0.86), and hydro-
graph lag time (correct at 22 out of 26 subcatchments), and (ii) justify 
model decisions such as the distribution of precipitation per subcatch-
ment, a landscape discretization based on bedrock permeability, the 
particularization of HRU model structures based on lithology-driven 
dominant processes, and a parameterization of lag functions based on 
topography and land use derived indices. With 12 calibration parame-
ters, of which 5 are HRU-specific, and the others global or uniform in all 
HRUs, our final conceptual model structure represented a parsimonious 
representation of streamflow generating processes in the Moselle 
catchment. 

We found that the added value of the conceptual model compared to 
the perceptual model alone, was that it helped provide a unique catch-
ment description that explained several traits of the spatial variability of 
subcatchment response. While we acknowledge that our conceptual 
model is developed for an individual regional scale catchment, and its 
scope is therefore limited to the context for which it was developed. 
Nevertheless, the model development approach followed in this study is 
one that could be put into practice elsewhere. We believe this approach 
could contribute to better understanding regional scale catchment 
variability, and eventually, bespoke model development approaches 
that go beyond the current focus on generalizable models. 
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Appendix 

The model forcing data are represented by precipitation P (mm/d), potential evaporation EPot (mm/d), and temperature TC (◦C). The equations of 
the 5 distributed models are summarized in the Tables A1–A5. 

Table A1 summarizes the water balance equations. In particular M(HRU1,Lag0) and M(HRU1,Lag1) are both based on a single HRU which is 
represented by a 3 reservoirs structure, composed by the reservoirs UR (unsaturated), FR (fast) and SR (slow). UR splits the inflow P(UR) between a 

Table A1 
Water balance equations of the models used in the experiments (✓ and “-“ indicate, respectively, presence or absence). S, P, Q, and E refer to storage, inflow, discharge 
and evaporation respectively. The superscripts (UR), (FR), (SR) and (HRU) refer to the UR, FR, and SR reservoir and the total HRU respectively.  

Water balance equations 3-reservoir HRUs 2-reservoir HRUL 2-reservoir HRUH 

dS(UR)

dt
= P(UR) − Q(UR) − E(UR) ✓ ✓ ✓ 

dS(FR)

dt
= P(FR) − Q(FR) ✓ ✓ – 

dS(SR)

dt
= P(SR) − Q(SR) ✓ – ✓ 

Q(UR) = P(FR) – ✓ – 

Q(UR) = P(SR) – – ✓ 

Q(UR) = P(FR) + P(SR) ✓ – – 

Q(HRU) = Q(FR) – ✓ – 

Q(HRU) = Q(SR) – – ✓ 

Q(HRU) = Q(FR) + Q(SR) ✓ – –  

Table A2 
Constitutive functions of the models used in the experiments (✓ and “-“ indicate, respectively, presence or absence). The functions f are defined in Table A3. Pa-
rameters, fluxes, states and are defined in Tables A1 and A6. The parameter m(UR) is a threshold smoothing parameter (Kavetski and Kuczera, 2007) and is fixed to a 
value of 10-2 mm. The parameter α(FR) is fixed at 2 (quadratic reservoir), whereas α(SR) is fixed at 1 except in the 2-reservoir HRUH, where it is fixed at 2.  

Constitutive functions 3-reservoir HRUs 2-reservoir HRUL 2-reservoir HRUH 

S(UR)
= S(UR)/S(UR)

Max  
✓ ✓ ✓ 

Q(UR) = P(UR)fp(S
(UR)

|β(UR)) ✓ ✓ ✓ 

E(UR) = c(UR)
E EPotfm(S

(UR)
|m(UR)) ✓ ✓ ✓ 

P(SR) = DQ(UR) ✓ – – 

Q(FR) = k(FR)fp(S(FR)|α(FR)) ✓ ✓ – 

Q(SR) = k(SR)fp(S(SR)|α(SR)) ✓ – ✓  

Table A3 
Constitutive functions.  

Functions Name 

fp(x|θ) = xθ  Power function 

fm(x|θ) =
x(1 + θ)

x + θ  
Monod-type kinetics, adjusted so that fm(1|θ) = 1  

Table A4 
Snow reservoir. S, P, and Q, refer to storage, inflow, and discharge. The superscript (WR) refers to WR (the 
snow reservoir), and the subscripts P and M refer to precipitation and melting (the two outflows from WR). 
The parameters T(WR)

Cp and T(WR)
Cm are fixed at 0 and 2 ◦C respectively.  

Equation Description 

dS(WR)

dt
= P − Q(WR)

P − Q(WR)
M  

Water balance 

P(UR) = Q(WR)
P + Q(WR)

M  
Inflow to UR 

Q(WR)
P
P

=

{
0, TC < T(WR)

Cp

1, otherwise  

Constitutive equation1 

Q(WR)
M =

⎧
⎨

⎩

0, TC < T(WR)
Cm

k(WR)TC , otherwise  

Constitutive equation1    

1 Smoothed using the method in Kavetski and Kuczera (2007). 
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portion that is stored, and eventually evaporates as E(UR), and a portion that eventually produces runoff, Q(UR). Q(UR) is then partitioned between P(FR)

and P(SR), which enter FR and SR respectively. The outflows of FR and SR, Q(FR) and Q(SR), are summed together, and form the outflow of the individual 
HRU Q(HRU). M(HRU2,Lag1) and M(HRU2,Lag2) both have 2 HRUs, high permeability (HRUH) and medium–low permeability (HRUML). Both HRUs are 
described by the same 3-reservoirs structure described above. M(HRU3,Lag2) has 3 HRUs, high, medium and low permeability (HRUH, HRUM, and 
HRUL respectively). The HRUH model structure excludes the FR reservoir, the HRUM model structure has both FR and SR, while the HRUL model 
structure excludes the SR reservoir. 

Table A2 describes the models constitutive functions, with functions symbols defined in Table A3. UR partitions incoming precipitation between a 
portion that is stored and outflow using a power function, defined by a parameter β(UR). Evaporation from UR is proportional to the potential 
evaporation with a parameter c(UR)

E , and approaches zero as the reservoir depletes depending on a smoothing parameter m(UR). The 3 reservoir 
structure partitions of the outflow from UR between the inflows to FR and SR depending on the parameter D. FR is parameterized as a nonlinear 
reservoir, which depends on a parameter k(FR) and a power α(FR) fixed at 2 (hence a quadratic reservoir). SR is a linear reservoir, which depends on the 
parameter k(SR). The 2 reservoirs structures used for HRUH and HRUL in M(HRU3,Lag2) parameterize both SR and FR as quadratic reservoirs. 

Table A4 describes the snow reservoir. Precipitation P is partitioned between a portion that is stored and rainfall Q(WR)
P . Rainfall Q(WR)

P depends on a 
temperature threshold T(WR)

Cp , which is fixed at 0◦ degrees Celsius. Snowmelt Q(WR)
M depends on a temperature threshold T(WR)

Cm , which is fixed at 2◦

degrees Celsius, and on the degree-day parameter k(WR). The temperature thresholds as well as the effective melting rate are smoothed using the 
method in Kavetski and Kuczera (2007). The inflow to UR is given by the sum of rainfall and snowmelt. 

For the routing elements, a triangular lag function, similarly to the HBV model (Lindström et al., 1997), is used. This function is described in 
Table A5, and depends on the time base parameter T(L). Routing elements are not present in M(HRU1,Lag0). The other models include the same number 
of routing elements, and differ for the regularization relationship used to scale the time base parameters T(L) for the various lag functions. M(HRU1, 
Lag1) and M(HRU2,Lag1) use a simpler parameterization, where the scaling of the routing depends on drainage distance alone e.g. Lerat et al., (2012):  

• Incremental subcatchment routing elements (CL). We assume that the time parameter representing the routing of the incremental subcatchment i, 
is related to its landscape properties by the following expression: 

T (CL)
i = a(CL)L(Top)

DstD,i (9) 

where a(CL) is a calibration parameter, and L(Top)
DstD , already defined in FM2022, indicates the maximum drainage distance of the incremental 

subcatchment.  

• River routing elements (RL). We assume that the time parameter of the lag functions representing the routing of the river stretch i, which goes from 
the outlet of the subcatchment i (indicated with A) to the next downstream outlet (indicated with B), is related to landscape properties by the 
following expression: 

T (RL)
i = a(RL)LAB,i (10) 

Table A5 
Triangular lag function for flow routing. P(L) indicates the input, Q(L) indicates the output, h(L) is the lag 
function, the symbol * denotes the convolution operator, and T(L) is the time base of the lag function.  

Q(L) = (P(L)*h(L))(t) Convolution 

h(L)(t) =

⎧
⎪⎨

⎪⎩

4t/
(
T(L) )2, 0 < t⩽T(L)/2

4/T(L) ( 1 − t/T(L) ), T(L)/2 < t⩽T(L)

0, t > T(L)

Triangular lag function     

Table A6 
Overview of model parameters in the HRU model structures and corresponding calibration range.  

Parameters Units Calibration range Model 

k(WR) mm/(d◦C) [0.01–10] All 

c(UR)
E  

– [0.1–3.0] All 

S(UR)
Max  

mm [0–600] All 

β(UR) – [10-2-10] All 

D  – [0–1] All 

k(FR) mm1-α d-1 [10-4-1] All 

k(SR) mm1-α d-1 [10-7-10-1] All 

a(CL)
1  

d Calculated so that the maximum lag is shorter than 20 days M(HRUi,Lag2) 

a(CL)
2  

d km− 1 Calculated so that the maximum lag is shorter than 20 days M(HRUi,Lag2) 

a(RL) d km− 0.8 Calculated so that the maximum lag is shorter than 20 days M(HRUi,Lag2) 

a(CL) d km− 1 Calculated so that the maximum lag is shorter than 20 days M(HRUi,Lag1) 

a(RL) d km− 1 Calculated so that the maximum lag is shorter than 20 days M(HRUi,Lag1)  
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where a(RL) is a calibration parameter, and the symbol LAB, already defined in FM2022, represents the drainage distance between the two outlets A and 
B. 

M(HRU2,Lag2) and M(HRU3,Lag2) use a more complex parameterization of the regularization relationships, motivated by the data analysis in the 
perceptual model, which is described as follows:  

• Incremental subcatchment routing elements (CL). We assume that the time parameter representing the routing of the incremental subcatchment i, 
is related to its landscape properties by the following expression: 

T (CL)
i = a(CL)

1 + a(CL)
2

L(Top)
DstG,i

L(Lnd)
Dev,i L

(Top)
Sl05,i

(11)  

where a(CL)
1 and a(CL)

2 are calibration parameters, and the symbols L(Top)
DstG , L(Lnd)

Dev and L(Top)
Sl05 , already defined in FM2022, represent respectively the 

geometric distance, the fraction of developed land use, and the 5% quantile of the slope. This expression corresponds to Equation 10 in FM2022.  

• River routing elements (RL). We assume that the time parameter of the lag functions representing the routing of the river stretch i, which goes from 
the outlet of the subcatchment i (indicated with A) to the next downstream outlet (indicated with B), is related to landscape properties by the 
following expression: 

T (RL)
i = a(RL)LAB,i

Aα
AB,i  

where a(RL) is a calibration parameter, and the symbols LAB, AAB and α, already defined in FM2022, represent respectively the distance along the river 
network between two points A and B, the average area between the total subcatchments at A and B, and the exponent constant (fixed at 0.1, see 
FM2022). This expression corresponds to Equation 12 in FM2022. 

The absence of feedbacks between landscape elements greatly simplifies the solution of the system of mass balance differential equations, which 
can be solved step by step, using a fixed step implicit approximation Fenicia et al. (2011). 
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