Recent Activities

Where we have been and 

Where we are going!

Loading...

Lab History

Acknowledgements and Launch

The Smart Water Systems Laboratory is a Centre for Hydrology facility that supports the Global Water Futures Program through both internal and external funding sources. The following have made significant contributions to the laboratory.

  • Western Economic Diversification Canada
  • Environment and Climate Change Canada through the National Hydrological Sciences and Water Science and Technology program
  • Canada Foundation for Innovation 
  • Natural Sciences and Engineering Research Council of Canada. 
  • The SWSL is hosted by Environment and Climate Change Canada’s National Hydrology Research Centre

Facilities

The SWSL has multiple workstations and tremendous facilities for conduction electronics and sensor design research. The lab is strongly equipped with innovative sensors for the mapping and diagnoses of land surface processes during snow and snowfree seasons. Those sensors include UAV and terrestrial LiDAR, Multispectral, Hyperspectral, Optical, Thermal and IR cameras, Field spectrometer and traditional survey equipment.

Main room

Lab Equipment

 

  • 3 Permanent workstations (Students, Researchers and Scientists)
  • Leica base stations (GS16)
  • Cansel Total Station
  • Novatel Base station (roof mounted continuous operation) (PwrPak7)
  • Optech Ilris Terrestrial Scanner (tripod mounted)
  • Stratasys 3d Printer (Model F370)
  • Portable 3d scanners (Artec 3D Spider and Eva models)
  • Espec Environmental Chamber
  • Custom Computer and Server systems 
  • Portable diagnostic electronics station
  • Typical electronics lab equipment for creation of PCB's 
  • Reflow Oven and Stencil printer
  • Virtual Reality (VR) devices (x3)

Field Data - Collection

Yr - Julian Day location  LiDAR + RGB Hyper-spectral SODA /ThermoMap (eBee RTK) DUET - T (eBee X) 3D SODA (eBee X) ThermoMap /Sequoia /SODA (eBee +) FLIR/RGB/Multi (Draganfly) HasselBlad RGB (Mavic2 Pro) Leica dGPS met data
18-079               x      
18-109       x       x      
18-178       x       x   x  
18-186     x x       x   x  
18-191   x   x       x   x  
18-198   x x x       x   x  
18-207   x   x       x   x  
18-211   x x         x   x  
18-220 Outlook x x       x x   x  
18-235 Clavet x x       x     x  
18-250 Rosthern x         x     x  
18-260 Fortress x   x       x   x  
18-261 Fortress x x         x   x  
18-262 Fortress x           x   x  
18-283   x               x  
18-291   x               x  
18-327 SWSL x           x   x  
18-344 SWSL x               x  
18-347 Clavet x x       x     x  
19-031 Clavet x x x           x x
19-042 Fortress                    
19-043 Fortress                    
19-044 Fortress x   x           x  
19-045 Marmot Creek x x x     x x   x x
19-050 Marmot Creek x               x x
19-052 Marmot Creek x               x x
19-066 Clavet         x       x  
19-070 Clavet x x     x x     x  
19-072 Rosthern x x     x x     x  
19-074 Clavet x x       x x   x x
19-077 Rosthern x x     x x     x  
19-079 Clavet x x     x x     x x
19-081 Rosthern x x     x x     x x
19-083 Rosthern         x       x  
19-085 Rosthern x x     x x     x x
19-088 Rosthern x x     x x     x  
19-093 Clavet x       x       x  
19-094 Rosthern x x     x       x  
19-099 Rosthern x     x         x x
19-107 Marmot Creek x               x x
19-108 Clavet       x         x x
19-113 Fortress x               x x
19-114 Fortress x               x  
19-115 Fortress x               x  
19-118 Marmot Creek                 x x
19-123 Marmot Creek x               x x
19-129 Clavet   x   x         x  
19-133 Clavet x x   x   x     x x
19-149 Marmot Creek x               x x
19-164 Clavet x x   x   x     x x
19-172 Clavet               x    
19-173 Rosthern               x    
19-177 Clavet x x   x   x   x x x
19-184 Clavet x x   x   x     x x
19-186 Buffalo Pound   x   x   x   x x x
19-210 Buffalo Pound           x     x  
19-212 Clavet x     x   x        

Key Areas of Research

Unmanned Aerial Vehicles (UAVs)

A number of UAVs are available for mapping of landscapes during the snow-covered and snow-free seasons.  The UAVs owned and operated by the SWSL are deployed at field sites in the Prairies and Rocky Mountains.  UAV platforms manufactured and configured by DJI International, Sensefly, and DraganFly are available for use in research projects.  

SWSL Drones and Associated Sensors

DJI  M600 Pro / Riegl Mini Vux-1, Sony RGB  (905nm, 380nm-740nm)

DJI  M600 Pro / Corning Hyperspectral Camera (400nm – 1000nm)

eBee RTK / Soda  (380nm-740nm)

eBee + / Thermo Map, Sequoia (7.5µm – 12.5µm,  G-550nm R-660nm RE-735nm NIR 790nm)

eBee X / 3D Soda, Duet T and S110 NIR (380nm-740nm, 7.5µm – 12.5µm, G-550nm R-625nm NIR- 850nm)

Draganfly Commander / RGB, FLIR (380nm-740nm, 7.5µm – 12.5µm)

 

Drone in the field

Photo Credit: Alistair Wallace 

 

Sensor  Outcomes
LiDAR 3D pointcloud with intensity
Hyperspectral Produces continuous imaging of narrow spectral bands over a spectral range
Multispectral Produces several images (gre,reg,red,nir,rgb) at discrete and narrow bands
RGB Camera Produces Red, Green and Blue visable images
Thermal Camera Produces thermal images
Field Spectrometer

 

Field Research Sites

Location  KML Coordinates
Clavet, Saskatchewan Google Earth 51o, 56', 25.2816" N, 106o, 22', 47.0712" W
Rosthern, Saskatchewan Google Earth 52o, 41', 45.6612" N, 106o, 27', 42.1569" W
Outlook, Saskatchewan Google Earth 51o, 28", 15.1536" N, 107o,  0', 20.5272" W
Marmot Creek, Alberta Google Earth 50o, 57", 21.4812" N, 115o, 10" 53.8644" W
Fortress Mountain, Alberta Google Earth 50o, 50",  8.8116" N, 115o, 13", 22.9044" W

Field Research Images

 

Drone Images

 

 

 

Sensors and Systems

SWSL designs, develops and tests sensors and systems that measure all components of the hydrological cycle.  The sensors are self-calibrating with onboard signal processing for in-field feedback and rapid data availability.  Sensors are equipped with network interfaces such as WiFi and LoRa.  SWSL research is focussed on the use of active and passive technologies involving acoustics, electromagnetic waves, visible and near-infrared cameras as well as LIDAR and GPS.

SWSL personnel are interested in how novel devices can be used to provide data inputs to mathematical models of climate change, drought, snowmelt, and flooding.  These models can provide predictions and forecasts useful for agriculture, natural resources and ecosystem protection.  To ensure that the research is reproducible for maximum applicability, all source code, data, and ancillary information scientific papers written for the SWSL will be available for download from a github repository.

 

Self-calibration of sensors, network connectivity and in-field availability of data are major aspects of our system development philosophy.  This philosophy is supported by embedded operating systems and wireless networks.

 

 

Field installation

Photo Credit: Robin Heavens

 

 

Sensors in Development

 

The System for Acoustic Sensing of Snow (Chione, as shown below) measures snow depth, density, liquid water content and temperature by the use of acoustic waves.

 Chione2.jpg

 

The Non-Contact Stream Sensor (NCSS) measures the distance to a stream by the use of multiple ultrasonic transducers without the use of air temperature measurements. The Self-Calibrating Heat Pulse Probe (SCHEPP) measures the liquid water/ice content and density of soils without the need for calibration of probe spacing radius. The Automated Gas Trap (AGT) measures gas flux (ebullition) from lakes and reservoirs using an electronic circuit and a automated solenoid valve.

 NCSS.JPG

Personnel

Core Research Personnel (Saskatoon, Saskatchewan)

Research Associates

Laboratory Management

Graduate Students

Field Support Staff (Canmore, Alberta)

Research Code

Clone github repos @smartwaterlab